
IC. HFILE. GUN?

00
LO
IgII A

(PROTOTYPICAL IMPLEMENTATION OF GALAHAD:

A CONCEPTUAL MODELING LANGUAGE

USING THE OBJECT PARADIGM

by

MARK McKAY NICKSON

B.S., Virginia Polytechnic Institute and State University, 1983

DTICS ELECTE

SEP 19 1989 11

D D A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Management Science and Information Systems

1988
DISTFI---r-ON STATZdENT A

Approved foz puE-i, releaset
Distribumon Unlimited .

t g q / o 9

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
APPROVED FOR PUBLIC RELEASE;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/CI/CIA-88-24E

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT (If applicable) AFIT/CIA
NIVERSITY OF COLORADO I

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45633-6583

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

15c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification) (UNClNSSIFIED)
A PROTOTYPICAL IMPLENTATION OF GALAHAD:

A CONCEPTUAL MODELING LANGUAGE USING THE OBJECT PARADIGM
12. PERSONAL AUTHOR(S)

MARK McKAY NICKSON
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT
THESIS/- FROM TO 1988 212
16. SUPPLEMENTARY NOTATION APPRUVED FOR PuBLIC RELEASE IAW AFR 190-1

ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer, Civilian Institution Programs

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. ,,- DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
ERNEST A. HAYGOOD, 1st Lt, USAF (513) 255-2259 AFIT/CI

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

AFIT/CI "OVERPRINT"

This thesis for the Master of Science degree by

Mark McKay Nickson

has been approved for the

Department of

Management Science and Information Systems

by

--1avid E. Monarchi

Robert H.%lo

Accesion For

NTIS CRA&I

U iannoin'md 0

By
Di ib

Dist

'fo
A-1.

iii

Nickson, Mark McKay (M.S., Management Science/Information Systems)

A Prototypical Implementation of Galahad: A Conceptual Modeling Language

Using the Object Paradigm

Thesis directed by Associate Professor David E. Monarchi

This thesis discusses a DOS micro computer implementation of

Galahad, a conceptual modeling language based on the object paradigm. The

language chosen for this particular implementation was PC Scheme, a dialect of

LISP developed by Texas Instruments. The focus of the discussion is on the code

for the implementation.

. To place the implementation in perspective, a general discussion of the

object paradigm is presented along with the specific object-oriented specifications

required for the Galahad system. Also, a brief survey of the major object-oriented

languages available today is presented.

The reader is assumed to have a basic understanding of the object

paradigm and is also assumed to be intimately familiar with the Scheme

programming language.

DEDICATION

To my parents, Marion and Ben Nickson

V

ACKNOWLEDGEMENTS

I first would like to thank Professors Monarchi and Taylor for their

careful review of this paper and their invaluable editorial comments. I owe special

thanks to Professor Monarchi for his assistance with the design of the prototype

and his thoughtful insight in helping me tackle some tough coding problems.

I owe special gratitude to Professor Tegarden, for his continual patience

in answering rMy seemingly endless stream of questions. Professor Tegarden has

maintained a forest-level view of the prototype and has bailed me out of countless

tree-level, and sometimes even knothole-level, coding problems. Professor

Tegarden also deserves the initial credit for our analysis of the SCOOPS

implementation.

Finally, I would like to thank my wife Pamela Ann. For the last two and

a half years she has been eternally patient and supportive as I have pursued my

Master's degree.

CONTENTS

CHAPTER

1. INTRODUCTION I

The Object Paradigm........................... 2

Object-Oriented Programming..................... 3

Encapsulation.............................. 4

Information Hiding........................... 4

Polymorphism............................. 5

Data Abstraction............................ 5

Class Abstraction Mechanisms................... 6

Inheritance................................ 7

Dynamic Binding............................ 7

II. THE GALAHAD LANGUAGE SPECIFICATION:
PRIMARY MODELING REQUIREMENTS............ 9

Conventional Object-Oriented Concepts............... 10

Lattice Inheritance............................ 10

Instance Lattice Inheritance...................... 12

Instance Anomalies............................ 13

Abstract Superciasses.......................... 15

Simple Classes............................... 17

Domain/Cardinality Constraint Enforcement............ 18

vii

Specialized Methods 18

The Access-To Mechanism...................... 22

Interclass Existence Dependencies 2

Instance Aggregation. 23

Part Aggregation. 25

Element Aggregation 26

Member Aggregation 26

Concluding Remarks on Instance Aggregation 27

Ill. SURVEY OF CURRENTLY AVAILABLE
OBJECT-ORIENTED LANGUAGES................ 28

SIMULA.................................. 28

Smalltalk.................................. 30

ACTOR................................... 31

FLAVORS................................. 32

Loops.................................... 33

SCOOPS.................................. 34

CLOS.................................... 36

Comparison of Major Features of
Current Object-Oriented Languages................ 37

IV. THE GALAHAD SYSTEM....................... 44

Development Methodology...................... 45

Coding Conventions........................... 46

Galahad Basics.............................. 47

Galahad Primary Data Structures................. 47

Galahad Logical Design....................... 48

Galahad Environment Frame Design............... 53

viii

The Implementation of Message
Passing in Galahad. 57

Modeling Requirements Implementation 64

Lattice Inheritance. 64

Instance Lattice Inheritance. 66

Abstract Superciasses. 71

Simple Classes. 71

DomainlCardinality Constraint Enforcement. 74

Specialized Methods. 76

Instance Aggregation. 79

V. DIRECTIONS FOR FUTURE ,
RESEARCH AND CONCLUSION. 83

Minor Programming Tasks. 83

Additional Functionality. 88

Conclusion. 95

BIBLIOGRAPHY '96

APPENDIX

A A DESCRTIO71N OF GALA ETAD CLASS
AND INSTANCE VECTORS..................... 99

B. GALAHAD USER'S GUIDE...................... 119

C. AN ANALYSIS OF TEXAS INSTRUMENT'S
IMPLEMENTATION OF SCOOPS IN
PC SCHEME.............................. 178

TABLES

Table

3-1 Comparison of Object-Oriented Languages 38

3-2 Glossary of Terms 40

FIGURES

Figure

2-1 Lattice Inheritance Example 11

2-2. Instance Lattice Inheritance Example 14

2-3 Instance Anomaly Example 14

2-4 Abstract Superclass Example 16

2-5 Domain/Cardinality Constraint Example 19

2-6 Specialized Methods Example 21

2-7 Instance Aggregation Example 24

4-1 Galahad Class and Instance Vectors 49

4-2 Galahad Logical Design 51

4-3 Initial Environment Frame Structure 54

4-4 Code Showing the Implementation of
Galahad's READ-EVAL-PRINT Loop 56

4-5 Galahad Environment Frame Structure 58

4-6 Implementation of Message Passing 60

4-7 Code Showing the Construction of
Environment Bindings 62

4-8 Environment Frame Structure During
Evaluation of a Method 63

4-9 Lattice Inheritance Example (Revisited) 65

4-10 Segment of COMPILE-CLASS Code
Used to Implement Lattice Inheritance 67

xi

4-11 Instance Lattice Inheritance Example
(Revisited) 68

4-12 Completed All-Instance-Variables Slot
for the Instance DPT 70

4-13 Code Showing Implementation of
Message Sending when an Instance
has more than One Defining Class 72

4-14 Abstract -. perclasses Example (Revisited) 73

4-15 %SET-GALAHAD% 75

4-16 Specialized Methods Example (Revisited) 77

17 Code Showing the Implementation of
Specialized Methods 78

4-18 Instance Aggregation Example (Revisited)80

4-19 Instance Aggregation:
Differentiation Among Different Subclasses 82

B-i Proper Overall Format for a Galahad Application122

C-i SCOOPS Class Vector and
Instance Environment Structure 180

C-2 SCOOPS and Lattice Inheritance for Methods185

C-3 SCOOPS Environment Hierarchy:
Multiple Classes with Multiple Instances 189

CHAPTER I

INTRODUCTION

The purpose of this paper is to describe the implementation of Galahad,

a conceptual modeling language based on the object paradigm. The Galahad

language specification was developed jointly by professors David E. Monarchi and

David P. Tegarden. Professor Monarchi is an Associate Professor at the College

of Business, University of Colorado, Boulder. Professor Tegarden is currently

pursuing his doctoral degree from the same institution.

This work describes the implementation of a prototypical version of

Galahad. We assume the reader is conversant in TI Scheme, a version of the

Scheme programming language developed by Texas Instruments. Even though we

provide a brief introduction to object-oriented concepts in the beginning of this

paper, we presume the reader has some prior familiarity with the object paradigm.

The main body of this paper is designed to be read in its entirety. We

begin our discussion by first introducing the reader to some of the basic tenants

behind the object paradigm and object-oriented programming. Chapter 2 describes

the Galahad language specification and its major modeling capabilities. Chapter 3

places the Galahad specification in the context of current literature by comparing

Galahad to other object-oriented systems available today. Chapter 4 discusses the

details behind the implementation of the language specification. Accompanying

.b.-se details are segments of Galahad code that show how we implemented the

2

language. Chapter 5 concludes this work by discussing the limitations of the

current system and suggesting directions for future research.

Also accompanying this paper are several appendices which the reader

can reference for additional information. Appendix A provides a comprehensive

description of the data structures used to implement Galahad classes and instances.

Appendix B serves as the Galahad user's guide. Appendix C describes our

analysis of Texas Instrument's implementation of SCOOPS (SCheme Object

Oriented Subsystem). We include the SCOOPS description in this thesis because

our analysis of the implementation assisted us with the design of the Galahad

system.

The Object Paradigm

The object paradigm can be viewed as an information modeling concept

that describes conceptual entities as objects. The relationships among these

conceptual entities are directly modeled as logical connections among the objects.

Objects communicate their local state and request services of other objects by

sending messages.

To define the term "object", we will conform with the data modeling

literature and define an object as either an object-class or an object-instance.

(Monarchi et al., 1988) An object-class is:

... a named collection of properties and procedures. The value of a
property may be atomic, a simple or composite object-instance, or a simple or
composite object-class. A procedure may be associated with a specific
property or with the object-class itself. (Monarchi et al., 1988, p. 3)

3

An object-instance is:

... a member of an object-class. The description of the object-class
defines the properties and procedures of individual members. Each member
supplies values for the properties. (Monarchi et al., 1988, p. 3)

From the definitions presented above, the reader should realize that an

object (either an object-class or an object-instance) is a conceptual entity that can

be described both in terms of its static attributes and its behavior. One can view an

object-class as a template and an object-instance as a specific occurrence of a

template with values assigned to properties. (Monarchi et al., 1988)

We also note that some people working with the object paradigm view

object-classes as prototypes rather than templates. Treating an object-class as a

prototype allows for the potential cancelation of properties. We have purposely

decided to prohibit the cancelation of properties. Consequently, we have adopted

the template definition for an object-class.

For simplicity, we will refer to object-classes as classes and object-

instances as instances throughout the remainder of this paper.

Object-Oriented Programming

Object-oriented programaing (OOP) is a programming technique that

employes the object paradigm. Classes and instances are directly represented in

object languages. Static attributes associated with these entities are represented as

data properties. Behavior is modeled by procedures. These procedures are

commonly referred to as either class or instance methods. In object-oriented

programming, methods are responsible for both sending and receiving messages.

OOP is useful because it enables the developer to build models that

more closely resemble the real world. (Borgida et al., 1985) This natural

4

correspondence between the real world and the computer model enable the

programmer to build constructs in a semantically richer, more flexible

programming environment than that offered through conventional programming

techniques. Among the features of the object paradigm that provide the

programmer with this flexibility are encapsulation, information hiding,

polymorphism, data abstraction, class abstraction mechanisms, inheritance, and

dynamic binding.

Encapsulation

According to Ledbetter and Cox (1985, p. 308), "Encapsulation defines a

data structure and a group of procedures for accessing it." In other words,

encapsulation is a concept that allows programmers to treat objects as self-

contained, autonomous entities. It enables an object program to send messages to

classes and instances without having to know the details behind an object's

response to a message. Conversely, an object programmer can build classes and

instances without having to worry about unwanted side effects affecting other

objects. The only way a class or instance can interact with other objects is through

the formal message passing protocol.

Information Hiding

A concept related to encapsulation is the idea of information hiding.

Geoffrey Pascoe (1986, p. 308) describes this as: "Information hiding ... [is a

feature whe -el the state of a software module is contained in private variables,

visible only from within the scope of the module."

Given the definition above, information hiding is nothing more than the

concept of using locally defined variables in a procedure. As far as the object

5

paradigm is concerned, the scope of a local variable is extended to include the

entire object. While the information hiding concept is certainly not new, it

continues to be a powerful programming feature. Information hiding enables

objects to have unlimited access to their own local state, while at the same time

controlling the degree their local attributes are made available to other entities in a

programming environment.

Polymorphism

Another feature related to the encapsulation concept is the ;dea of

polymorphism. Stefik and Bobrow (1986, p. 41) describe polymorphism as:

In general the term polymorphism means "having or assuming different
forms," but in the context of object-oriented programming, it refers to the
capability for different classes of objects to respond to exactly the same
protocols [messages].

Stated more simply, polymorphism is a feature that allows different

objects to respond differently to the exact same message. This feature enables

object programmers to develop standardized interfaces between entities while at

the same time having the freedom to implement an object's unique response to a

message.

Data Abstraction

Data abstraction is a logical extension of the encapsulation concept.

Stefik and Bobrow (1986, p. 41) describe data abstraction as, "The principle...

that calling programs should not make assumptions about the implementation and

internal representations of data types they use."

Data abstraction allows object programmers to implement primitive

constructs and then use these lower level concepts to build increasingly powerful,

6

more generalized data structures. In terms of object programming, these more

generalized constructs often are represented as classes. The class relies on the

implementation details its own methods and variables to exhibit the behavior of

the abstracted data type.

Data abstraction enables the object programmer to concentrate on the

level of detail appropriate for the given application. All the programmer need do

is send messages to an object. He/she does not have to worry about the underlying

implementation details.

Class Abstraction Mechanisms

Class abstraction deals with the relationships among classes; data

abstraction is concerned with building higher level data constructs from lower

level, implementation dependent primitives. Two main abstraction mechanisms

prevalent in the object literature today are classification and generalization.

Classification. This abstraction mechanism is described by Gibbs

(1985): "[Classification] allows one to ignore the details of particular objects by

using a construct which represents a set of objects with similar structure."

This definition says that a class can be created based on the existence of

similar instances. The attributes of the resulting class are shared among all its

instances. In other words, classification connects instances to their defining class.

Generalization. Generalization combines similar properties of classes

and stores them at a higher, more generic level. Alagic (1986) describes

generalization as ".... extracting common properties of one or more entity types

[classes] while suppressing the differences among them."

7

Generalization allows the object programmer to build hierarchies of

classes where a parent class (superclass) contains methods and variables common

to all of its children (subclasses). Generalization is especially useful because it

enables the programmer to store with a class information that is unique to the

class. The programmer can then rely on class inheritance to spread the properties

to the class's subclasses.

Inheritance

Inheritance allows classes to acquire properties of other classes based on

their position in the class hierarchy. More specifically, subclasses inherit methods

and variables from their superclasses. Inheritance frees the object programmer

from having to duplicate specifications throughout the entire class hierarchy.

Instead, all the programmer need do is store the property once at the appropriate

level in the class hierarchy. After the property is stored with a class, it is then

copied to all the class's subclasses.

Inheritance is also used to describe the mechanism used by instances to

acquire properties from their defining class. An instance inherits both instance

methods and instance variables from its defining class.

Dynamic Binding

Dynamic binding in an object-oriented system enables the programmer

to write code without having to worry about the contingencies of handling

different data types. For example, assume a programmer is writing a routine that

prints the contents of a queue data structure. Also assume this queue contains a

mixture of binary integers, floating point numbers, and character strings. Using

conventional programming techniques, the programmer must test for each data

8

type and perform the appropriate transformations to convert the data into printable

form.

In the object paradigm, however, each data type is treated as an object

and thus is responsible for its own data-dependent behavior. All the programmer

needs to do is send a message to the appropriate data type to "print itself." The

methods associated with the particular data type then perform the necessary

transformations.

We refer to this concept as "dynamic binding" because new data types

can be added to an object-oriented system without having to modify existing

methods. The data-dependent code is automatically bound to existing methods

because of the message passing protocol.

CHAPTER II

THE GALAHAD LANGUAGE SPECIFICATION:
PRIMARY MODELING REQUIREMENTS

The modeling requirements for the Galahad Language were developed

by professors Monarchi and Tegarden. Their requirements have evolved over the

past year as they used the object paradigm to address conceptual modeling issues.

Their original intent was to use existing object-oriented languages to pursue their

research. Unfortunately, the capability associated with these object-oriented

ianguages failed to provide the explicit support needed for addressing certain

conceptual modeling concepts. Consequently, they devised the requirements for a

language based on their own specific modeling needs.

The purpose of this chapter is to describe these modeling requirements.

These requirements form the basis of the Galahad language. While it is beyond

the scope of this paper to present the rationale behind the requirements, we will

provide the reader with an explanation of the specific features Galahad supports.

The WAR-SHIP examples we present with some of our explanations were inspired

by Michael Hammer and Dennis McLeod's articles on the Semantic Database

Model (SDM). (1978, 1981)

Galahad is based on the need for a conventional object-oriented

language with explicit support for the following concepts: lattice inheritance,

classification anomalies, instance anomalies, abstract superclasses, simple classes,

10

dornain/cardinality constraint enforcement, method specialization, the access-to

mechanism, interclass existence dependencies, and instance aggregations. Each

one of these requirements is described in more detail below.

Conventional Object-Oriented Concepts

Galahad supports the conventional object paradigm by directly modeling

classes, instances, and message passing protocols. Galahad classes store their

local state and exhibit their own behavior by using class variables and class

methods. Similarly, Galahad instances use instance variables and instance

methods to model their own status and performance as well. The reader is directed

to the sections in Chapter 1 on the object paradigm and object-oriented

programming for a brief overview of conventional object-oriented concepts.

Lattice Inheritance

Galahad programmers have the ability to arrange classes in a lattice

network. Unlike a purely hierarchical approach, a lattice enables a class to have

more than one immediate superclass. This way, a class with multiple parents can

inherit properties directly from both parents. Examples of other languages that

support lattice inheritance are FLAVORS (Moon, 1986) and SCOOPS (Texas

Instruments, 1987b).

While multiple inheritance provides the programmer with a powerful

tool for modeling classes, it does raise the issue of inheritance conflicts. Figure 2-

1 illustrates this concept.

NUCLEAR POWEREDWAEVHIL

VEHILE

ISize: (REACTO Size: {TONS)
SIZE)III

SUBMARIN1

Size: {???I

Figure 2-1. Lattice Inheritance Example

12

In this example, SUBMARINE is a subclass of both NUCLEAR

POWERED VEHICLE and WATER VEHICLE. From which superclass should

SUBMARINE inherit the attribute Size?

A common solution is to give precedence to the first listed (left most)

superclass. In this case, SUBMARINE would inherit Size from NUCLEAR

POWERED VEHICLE. The terminology for this form of conflict resolution is

"depth-first up to joins" (Stefik and Bobrow, 1986, p. 48). The reason for this

terminology is the system pursues a depth-first search, ignoring previously visited

nodes. Galahad uses "depth-first up to joins" as a default for conflict resolution.

Galahad also provides explicit support for selectively overriding the

"depth-first up to joins" conflict resolution mechanism. In the event the standard

inheritance protocol is not adequate, a Galahad programmer can identify

individual properties from specific superclasses to be included with the subclass.

Referring again to figure 2-1, we can specify that Size in SUBMARINE can be

inherited from WATER VEHICLE instead of from NUCLEAR POWERED

VEHICLE.

Instance Lattice Inheritance

For conceptual modeling purposes, there occasionally exists the need to

represent instances as "one of a kind" items. Grady Booch summarizes this need

in the following statement: "In some cases, the class of an object may be

anonvmous The implication is that there may be only one object of the class

(since there is no class name from which instances may be declared)." (1986, p.

216)

13

Instead of building a single class with only one instance, a Galahad

programmer can represent these "one of a kind" instances directly. To better

understand this concept, consider the example shown in figure 2-2.

In this example, we have one instance, DPT (short for Professor David

P. Tegarden), and two classes, PROFESSOR and STUDENT. Notice that DPT is

an instance of both PROFESSOR and STUDENT. There is no intermediate

subclass between DPT, PROFESSOR, and STUDENT. By directly modeling

instances in this fashion, the Galahad programmer is freed from the burden of

building a class just to model an anomaly.

Instance Anomalies

Just as there is a need to model classification anomalies, there exists the

requirement to represent individual instance anomalies as well. For our purposes,

we define an instance anomaly to be an instance-object which requires methods

and/or variables to be uniquely associated with the instance. These instance-

specific methods and variables are directly attached to an instance. They have no

corresponding specification in the instance's defining class.

To illustrate this concept, consider figure 2-3. In this example, we have

the class CHESS-PLAYER with the attributes Name, and National-Standing.

Associated with CHESS PLAYER is an instance with values Gary Kasparov and

"1" assigned to the variables Name and National-Standing respectively.

Notice the instance has an additional property, Playing-Strategy.

tlaying-Strategy is a method that contains the unique chess strategies and tactics

used by Gary Kasparov while playing a game. Since these strategies are unique to

this single individual, there is no corresponding specification in the instance's

14

PROFESSOR STUDENT

DPT

Figure 2-2. instance Lattice Inheritance Example

CHESS PLYER
Name: (STRING)

National.- (CHESS
Standing- RANK)

7nstane Of

Name: Gary Kasparov
National 1
Standing:
Playing Strategy:

<#!procedurez,

Figure 2-3. Instance Anomaly Example

15

oefining class. Playing-Strategy is an instance-specific method. Additionally, any

instance variables that are uniquely referenced by Playing-Strategy are considered

to be instance-specific variables.

Galahad supports the modeling of instance anomalies. A Galahad

programmer can assign instance-specific variables and methods to an instance. To

the best of our knowledge, the only other object-oriented language providing

explicit support for instance specific methods and instance specific variables is

Object LOGO (Schmucker, 1986).

Abstract Superclasses

Galahad provides the programmer with the capability to model abstract

superclasses. Adele Goldberg and David Robson give this definition of an abstract

superclass:

Abstract superclasses are created when two classes share a part of their
descriptions and yet neither one is properly a subclass of the other. A mutual
superclass is created for the two classes which contains their shared aspects.
This type of superclass is called abstract because it was not created in order
to have instances. (1983, p. 66).

As mentioned above, abstract superclasses enable the modeler to use

generalization abstraction without worrying about the creation of unwanted

instances. To illustrate, consider figure 2-4:

In this example, ENGINE is an abstract superclass of DIESEL ENGINE

and GASOLINE ENGINE. (The dashed box around ENGINE signifies that the

class is abstract.) Assuming we want only to model instances of DIESEL

ENGINE and GASOLINE ENGINE, we are justified in creating ENGINE as an

abstract superclass. This way, the integrity of the model is maintained by ensuring

that instances of ENGINE cannot be built.

16

ENGINE

Kind Of in Of

DIESEL GASOLINE

Figure 2-4. Abstract Superclass Example

17

Galahad supports the abstract superclass primitive by enabling the

programmer to label a class as ABSTRACT. Galahad specifically prevents the

creation of instances from ABSTRACT labeled classes.

Simple Classes

Galahad simple classes are used for the same purpose as that employed

by name classes in SDM (Hammer and McLeod, 1981). Simple classes assist the

Galahad programmer in building primitives designed to communicate with human

users. Michael Hammer and Dennis McLeod describe name classes in terms of

the Semantic Data Model as follows:

In the real world, entities can be denoted in a number of ways; for
example, a particular ship can be identified by giving its name or its hull
number, by exhibiting a picture of it, or by pointing one's finger at the ship
itself... However, there must also be some mechanism that allows for the
outside world (i.e., users) to communicate with an SDM database. This will
typically be accomplished by data being entered or displayed on a computer
terminal. However, one cannot enter or display a real entity on such a
terminal; it is necessary to employ representations of them for that purpose.
(1981, p. 361)

In terms of object-oriented programming, a Galahad simple class is not a

true object-class because it has no class/instance variables and no class/instance

methods. Instead, it is a procedural specification designed to test the proper

formatting of a passed object. This procedure is used to determine whether or not

a passed object is a "member" of the simple class.

For example, the simple class NAME may be defined as a procedure that

tests the length of a passed string and returns TRUE if the string's length is less

than or equal to 15 characters. Assuming we wanted to test the string "David",

"David" would pass the format test because it has less than 15 characters.

18

Therefore, Galahad would consider "David" to be a member of the simple class

NAME.

Domain/Cardinality Constraint Enforcement

Galahad programmers have explicit support for enforcing domain and

cardinality constraints on class and instance variables. This support enables a

modeler to restrict the values a variable can assume based on specifications

defined in the variable's defining class. To illustrate, refer to figure 2-5.

In this example, we have specified that instance variable Captain in class

WAR-SHIP can assume values only from the class OFFICER. Additionally, we

have designated all WAR-SHIPS are to have exactly one captain (cardinality (1

1)). As the reader can see, by restricting the values a class or instance attribute can

assume, Galahad provides the modeler with an automatic means of ensuring

variables do not violate domain or cardinality constraints.

A variable's legal domain and cardinality restrictions are defined during

class creation. Galahad domains can be regular classes or simple classes.

Cardinality is defined as a lower and upper bound pair. For example, (1 3)

specifies a lower cardinality of 1 and an upper cardinality of 3.

Specialized Methods

Occasionally a Galahad programmer may need to build a class or

instance method whose implementation depends on the class of the argument(s)

passed to the method. For example, the class WAR-SHIP may have a method

called Defend-Self. Defend-Self is a fairly complex method because the defense

of a ship is dependent on the specific nature of the threat. While the modeler can

19

Name: (STRING)
Registry: (COUNTRY
Captain: (OFFICER)

T Instance
Of

Name: USS Missouri
Registry: USA
Captain: Cpt. McKay

War Ship Cardinality

Name: (1 1)
Registry: (11)
Captain: (1 1)

Figure 2-5. Domain/Cardinality Constraint Example

20

certainly use a case statement to build one large method, it is generally more

practical to write separate functions which respond specifically to one class of

threat. Figure 2-6 illustrates this concept.

In this example, the actions a WAR-SHIP takes to defend itself depend

specifically on the type of threat to the vessel. In terms of object programming,

the Defend-Self method is really four separate procedures. Three of the four

procedures model behavior based on the specific nature of the threat. The fourth is

a dispatching function that checks on the class of the threat (in this case missile,

ship, or aircraft), and invokes the proper implementatiun-specific procedure that

"defends" the ship.

Galahad provides explicit support for the specialization of methods

based on the classes of all message arguments sent to an object. The original idea

came from the Common Lisp Object System (CLOS). (Keene, 1989) CLOS uses

a similar dispatching function that uses the class of a message's arguments to call

the appropriate procedure.

Galahad extends this concept by allowing the programmer to specialize

optional message arguments as well. Optional arguments are specialized only if

they are present. For example, assume Defend-Self has an optional parameter

which indicates the priority to be assigned to the threat. If no priority is specified

to the dispatching function, the system ignores the optional parameter, assumes

HIGH urgency, and dispatches the appropriate method. Conversely, if a LOW or

MEDIUM priority was assigned and passed as an optional parameter, Galahad

specializes on the parameter and invokes the appropriate method.

21

0 a
U

CLu

ClU)

22

The Access-To Mechanism

A concept closely related to specializing methods is the issue of

controlling access to an object. Grady Booch describes this access-to mechanism

in terms of restricting the scope of objects.

The names of objects should have a restricted scope. Thus, in designing
a system, we concern ourselves with what objects see and are seen by another
object or class of objects.... In the worse case, all objects can see one
another, and so there is the potential of unrestricted action. It is better that we
restrict the visibility among objects, so as to limit the number of objects we
must deal with to understand any part of the system and also to limit the
scope of change. (1986, p. 216)

In addition to limiting scope, the access-to mechanism includes the idea

that individual objects behave differently based on the class of the object sending

the message. For example, in our simulation of the WAR-SHIP environment, the

method Defend-Self should only be invoked by messages from "authorized"

objects. In other words, we don't want any arbitrary object to send a message to a

WAR-SHIP to defend itself.

Galahad explicitly supports the access-to concept. A Galahad

programmer can specialize a method to respond only to a certain sender or class of

senders. By specializing methods according to the sender of the message, Galahad

helps ensure continued model integrity.

Interclass Existence Dependencies

Galahad programmers have explicit support for modeling existence

dependencies among classes. To illustrate this concept, Peter Chen describes an

existence dependency in terms of a relationship between an EMPLOYEE and an

employee's DEPENDENTs.

23

[We] ... can express the existence dependency of one entity type on
another. For example, the... relationship set EMPLOYEE-DEPENDENT
indicates that existence of an entity in the entity set DEPENDENT depends
on the corresponding entity in the entity set EMPLOYEE. That is, if an
employee leaves the company, his dependents may no longer be of interest.
(1976, p. 20)

To illustrate further, refer again to figure 2-5. Assume that the modeler

is interested only in representing the class WAR-SHIP. In this case, OFFICER

would be existent dependent on WAR-SHIP because if the class WAR-SHIP were

removed from the system, there would be no need to continue representing

CAPTAIN.

Galahad supports dependent classes by allowing the modeler to specify

at class creation time whether a class is existent dependent on another class. If a

class has been defined to be dependent on another, then the dependent class is

automatically removed from the system whenever the corresponding non-

dependent entity is deleted.

Galahad supports dependent relationships at the instance level as well.

For example, if an instance has been defined to be dependent on another, then the

dependent instance is automatically removed from the system whenever the

corresponding non-dependent instance is deleted.

Instance Aggregation

The Galahad programmer may need an abstraction mechanism that

models aggregates, or collections, of objects. Additionally, the modeler may

require a means of relating instances of one particular class to instances of another

class. For example, consider figure 2-7.

24

CA

z a

25

In this example, we have the class WAR-SHIP and three instances: USS

Missouri, USS New Jersey, and the USS Benjamin Franklin. We also have the

class CONVOY and an instance of convoy, K12. Assume the three instances of

WAR-SHIP become members of convoy K12. Galahad provides explicit support

for showing the relationship between the three ship instances and the instance of

convoy. This relationship is referred to as an instance aggregation. (Monarchi et

al., 1988)

In the text below, Monarchi et al. describe the term instance aggregation

and relate it to other abstraction mechanisms:

Part, Element, Member. We refer to these three mechanisms as instance
aggregations because they relate instances of classes to other instances.
(Generalization relates classes to classes; classification relates instances of a
class to their defining class; and property aggregation groups properties into a
class). (1988, p. 8)

Notice their definition partitions instance aggregation into three types:

part, element, and member. While the overall concept of these instance

aggregations is the same, each has its own unique characteristics.

Part Aggregation

Part Instance Aggregation is used as a means to describe physical,

structural relationships. A more concise definition is:

Part aggregation groups instances of classes together to form an instance
of a new class. In contrast to generalization, the new class is not a superclass
of its component classes. This type of aggregation is represented by the Part-
of relationship between components and the aggregate. Its inverse is Parts.
(Monarchi et al., 1988, p. 9)

An example of a part aggregation would be the relationship between a

specific automobile and its comprising structural components such as doors,

hoods, etc.

26

Also, from the definition above, the reader should notice that an

aggregate instance cannot exist without the prior existence of its component parts.

Using the example above, this is analogous to saying an automobile cannot exist if

none of its comprising parts exits.

Element Aggregation

Element Instance Aggregation is used to describe logical, nonstructural

relationships. Specifically,

Element aggregation also groups instances together to form an instance
of a new class. And like part aggregation, the new class is not a superclass of
its components' classes. Bus in contrast to part aggregation, element
aggregation groups instances together when the association is logical rather
than structural. This type of aggregation is represented by the Element-of
relationship between the components and the aggregate; its inverse is
Elements. (Monarchi et al., 1988, p. 10)

An example of an element aggregation would be the assignment of a

military officer to a ship. Assuming an assignment must have both an officer and

a ship to exist, a specific officer and a specific ship are considered to be Elements

of the assignment.

Member Aggregation

Member Instance Aggregation is a specialization of the Element

Aggregation concept.

Member aggregation groups multiple instances of a class into an
instance of a new class. It is [a] special case of the Element-of relationship
because all instances which are grouped together to form a new aggregate are
from the same class. And just as in Element-of, the grouping is logical rather
than structural... Member aggregation is represented by the Member-of
relationship between components and the aggregate. The inverse is
Members. (Monarchi et al., 1988, p. 11)

27

The convoy example presented in figure 2-7 can be modeled using

Member aggregation. In this particular case, the three instances of WAR-SHIP

become Members of CONVOY K12.

Concluding Remarks on Instance Aggregation

Galahad provides explicit support for Part, Element, and Member

aggregations. Galahad programmers specify at the class level the permitted

instance aggregation connections between classes. For example, the modeler will

specify that a CONVOY has as its Members instances of WAR-SHIP. Galahad

then enforces these specifications during the creation and modification of

instances. This way, the programmer is prevented from making a undesired

instance aggregation connection. Also, since instance aggregations can have

cardinality specifications, Galahad enforces cardinality constraints as well.

CHAPTER III

SURVEY OF CURRENTLY AVAILABLE
OBJECT-ORIENTED LANGUAGES

The modeling requirements presented in Chapter 2 need to be examined

in the light of other currently available object-oriented languages (OOLs). The

purpose of this chapter is to provide the reader with a brief overview of some of

these languages. We also present a comparison table which enables the reader to

contrast the Galahad specification with these other systems.

The languages we describe below were chosen for either their historical

significance, or their influence on the formulation of Galahad's design. Thc

specific languages we discuss are SIMULA, Smalltalk, Actor, Flavors, U ops,

SCOOPS, and the Common Lisp Object System (CLOS). At the end of the

language descriptions, we present the table which compares the major features of

each of these languages.

SIMULA

SIMULA (SIMUlation LAnguage) was developed in the middle 1960's

by O.J. Dahl and K. Nygaard of the Norwegian Computing Center, Oslo, Norway.

The language was designed explicitly LO support discrete event simulation. It also

was the first language to employ object-oriented concepts.

29

SIMULA, which is based on ALGOL, enables the programmer to model

systems by allowing for the creation of classes and instances. Also, the

programmer is free to arrange classes in a generalization hierarchy. This enables

subclasses to inherit procedures and variables from their appropriate superclass.

Since SIMULA is a simulation language, all activity in a SIMULA

program is modeled by a series of discrete transactions. A transaction in SIMULA

is an entity that moves through the simulation model and interacts with the

model's various components. For example, a SIMULA program that models a

traffic intersection would have automobiles and pedestrians as iidividual

transactions in the "moving" portion of the model.

In light of the discussion above, it is important to realize that a

transaction in SIMULA is different from a message in today's object-oriented

systems. A SIMTJLA transaction is an instance of a class. It is used as a "unit of

traffic" to model the overall behavior of a system. A message is merely a means

of formalized communication among objects. Unlike SIMULA transactions,

messages are not objects.

Since transactions are crucial to a successful simulation, SIMULA

classes are specifically designed to facilitate the movement of transactions in the

model. Consequently, they don't have individual methods which can respond

differently to different messages. Instead, a class specification is defined in one

BEGIN/END block and all the code is dedicated to the movement of transactions

within the model.

Another unique feature of SIMULA is the explicit support for the

modeling of time. Since SIMULA models discrete events, the language must have

30

the primitives necessary to monitor the passage of time and update the state of the

system as necessary.

Smalltalk

Smalltalk was originally designed in the early 1970s by the researchers

at Xerox PARC in Palo Alto California. The vision for the language came from

Alan Kay who was searching for an easy, fun to use system to accompany his

Dynabook project. Since the early 70s, Smalltalk has gone through several

iterations, the latest of which is embodied in Smalltalk-84.

Smalltalk takes the credit for being the first language completely

designed and implemented using the object paradigm. Unlike SIMULA, which

uses ALGOL statements to model data, all of Smalltalk's data primitives are

implemented as classes. By representing everything as an object, Smalltalk

provides a uniform environment for building programs. Additionally, Smalltalk

has an extensive programming library which saves the programmer from having

to write any low-level input/output routines.

Smalltalk provides explicit support for the creation of classes, abstract

classes, instances, and methods. The language enables the programmer to arrange

classes in a hierarchy to allow for the inheritance of methods and variables.

Smalltalk-80 (Version II) has extended the inheritance concept to include lattice

inheritance as well.

Smalltalk also allows the programmer to model class, pool, and global

variables. Class variables are variables which apply to a particular Smalltalk class.

A class variable is also shared by all instances of a class. Pool variables are

similar to class variables; however, they are shared by all instances of a pre-

31

defined group of classes. Finally, global variables are data shared by all instances

in a Smalltalk application.

ACTOR

Actor is an object-oriented language originally developed in 1986 by the

Whitewater Group in Evanston, Illinois. Actor operates as an application under

MS-Windows and is one of the first OOLs to bring an integrated object-oriented

programming environment to personal microcomputers.

Actor provides modeling support for classes, instances, instance

variables, instance methods, class methods, and standard hierarchical inheritance.

Conspicuously absent, however, is the support for class variables. If the

programmer desires to use a variable that either pertains to a class, or is shared by

more than one instance, he/she is forced to use a global variable. Global variables

are data which are shared by all objects in an Actor application.

Like Smalltalk, Actor's design is completely embedded in the object

paradigm. All data objects are implemented as Actor classes. Also, Actor

parallels Smalltalk by having a master superclass called Object from which all

globally available methods are inherited. Actor implements Smalltalk's

Metaclass concept by using a separate Behavior class. Behavior contains all the

class methods necessary for the creation and management of user-defined Actor

classes.

While Actor is considered a "pure" object system, it does make a

fundamental departure from the conventional object paradigm. Specifically, any

object in Actor can access another object's instance variables without using the

message passing protocol. This direct accessing of another object's variables

32

violates the fundamental principles of data hiding and encapsulation. The

Whitewater Group acknowledges this weakness by stating:

This practice [of direct access] is discouraged in cases where altering an
object's internal state could produce complicated side-effects. It is an easy
and efficient way of communication with an object, but should be used with
caution. Many benefits accrue from letting complex objects manage their
own state. (1987, p. 543)

Hopefully, the next version of the Actor language will correct this

fundamental design flaw.

FLAVORS

Flavors is an OOL which was originally developed by the MIT Lisp

Machine group in 1979. It went through major revisions in both 1981 and 1985,

and now it is used in nearly every aspect of the Symbolics 3600 Operating System.

Like Smalltalk and Actor, Flavors has its own fully integrated programming

environment, complete with editors, browsers, compilers, and debuggers.

Flavors allows the programmer to model classes, instances, instance

variables, instance methods, and lattice inheritance. An especially interesting

feature is that Flavors sticks with the sensory paradigm when defining classes.

Classes are descendents of Vanilla, a class similar in function to Smalltalk's

Object class. Also, since Flavors allows for lattice inheritance, subclasses are

described as being "mixed" from several component (superclass) flavors. The

resulting class is now viewed as a new flavor, based in part on the mixture of the

component superclasses.

A class in Flavors arranges its component superclasses in most specific

to most general order. By arranging components in this manner, the system has a

framework for basing the resolution of inheritance conflicts. A default for conflict

33

resolution is to give priority to the most specific superclasses; however, a Flavors

programmer can change this strategy to suit his/her individual needs.

This flexibility is especially apparent when working with a class's

methods. The Flavors programmer has a wide degree of latitude in specifying the

exact combination of methods to be called in response to any particular message.

This combination of methods can include permitting a before-method to be called

prior to the primary method. The programmer can also specify the invocation of

an after-method following termination of the primary method. To provide even

further control, Flavors allows the programmer to specify conflict resolution rules

should there be conflicting before, primary, or after-methods in a class's

superclasses.

Another interesting feature of the Flavors language is the dynamic

nature of Flavors classes. A modeler can alter a particular class in Flavors, and the

Flavors system will automatically update the structure of the class's instances.

Loops

Loops was developed in 1983 by Daniel Bobrow and Mark Stefik at

Xerox PARC in Palo Alto California. The language design was based on the

notion that no single programming model provides elegant solutions to all types of

programming pn blems. Consequently, Loops was developed with elements of the

procedural, object, data access, and rule-based programming paradigms. The

intent was to provide the programmer with a single language incorporating aspects

of all four of these models. This way, Loops could (possibly) be used to solve all

classes of programming problems.

34

In terms of object-oriented programming, Loops provides the

programmer with the means to model classes, abstract classes, simple classes, and

instances. For the creation of classes, the modeler can use class variables, instance

variables, and instance methods. The programmer can also arrange Loops classes

in a lattice network. Loops uses the conventional depth-first left to right

prioritizing mechanism for the resolution of inheritance conflicts.

In addition to the above capabilities, Loops provides the programmer

with several features that address specialized modeling needs. These features

include the assignment of property lists to variables, the use of active values, the

modeling of composite objects, and specific support for viewing an object from

several different "perspectives."

Of the four features mentioned above, the two most interesting are the

modeling of composite objects, and viewing classes and instances from different

"perspectives." Composite objects enable the programmer to establish an

existence dependency between two or more instances. This is the same existence

dependency we discussed in Chapter 2. Whenever a Loops composite object is

instantiated, it automatically causes its component objects to be instantiated. The

"perspective" view mechanism also is a very powerful feature because it enables

the modeler to work with an object and keep separate the information which is

used for different purposes. Loops can differentiate among different perspectives

based on the class's immediate parents in the inheritance lattice.

SCOOPS

SCOOPS (Scheme Object-Oriented Programming System) is an object-

oriented extension to TI Scheme, a version of the Scheme programming language

35

developed by Texas Instruments. SCOOPS, developed in 1985, is similar in both

form and function to Loops and Flavors. The language reflects the object

paradigm by providing support for modeling classes, instances, and methods.

Probably the two most powerful features of the language are SCOOPS'

abilities to model lattice inheritance and active values. SCOOPS supports lattice

inheritance at the class level. SCOOPS classes inherit variables and methods from

their superclasses by pursuing a depth-first search up the lattice network. Priority

is given to those classes appearing first in a class's superclass list. Name conflicts

are resolved by a SCOOPS class adopting the first occurrence in the inheritance

network.

Another powerful feature of SCOOPS is the language's ability to attach

active values to instance variables. Active values provide the modeler with the

added flexibility of automatically calling a procedure whenever an instance

variable is referenced. This added control feature increases the capability of the

language by providing programmers with a means of tieing an object's behavior

directly to the accessing of its variables.

One major disadvantage of the language is that SCOOPS does not allow

the programmer to treat a class as a true object. No capability exists for the

SCOOPS programmer to create user-defined class methods. Since there is no

provision for class methods, no messages can be sent directly to a SCOOPS class.

Instead, to create instances and access class variables, the modeler is forced to

break from the message passing paradigm and use the globally available

procedures MAKE-INSTANCE, SET-CV, and GET-CV. The use of these

procedures leads to an inconsistent user interface.

36

CLOS

CLOS (Common Lisp Object System) was developed in direct response

to the need for a standardized object-oriented language. In 1986, a CLOS working

gioup was formed to devise a standard object language for adoption by the ACM

X3J13 Committee on the formal standardization of Common Lisp. This group,

which included Daniel Bobrow, Richard Gabriel, and David Moon, devised a

language based on the most useful and well established features of other currently

available object-oriented languages. Since that time, the X3J 13 committee has

adopted the CLOS specification as a standardized object-oriented extension to the

Common Lisp language.

Even though CLOS is a totally new language, it still has most of the

constructs associated with conventional object-oriented programming.

Specifically, a programmer can model classes, instances, class/instance variables,

and class/instance methods. A CLOS programmer can also allow for multiple

inheritance by arranging classes in a lattice network. CLOS follows Flavors's lead

by resolving inheritance conflicts based on a class precedence list. In CLOS, like

Flavors, a class's precedence list is arranged in most specific to least specific

order.

A major departure from the conventional object paradigm, however, is

that CLOS no longer "sends" messages to destination objects. Instead, the

language has borrowed from Flavors and adopted a "generic function" idea. A

CLOS generic function is called within a method just like any other conventional

Lisp function. Unlike a standard Lisp function, however, a CLOS generic function

is responsible for "dispatching" the proper method based on the parameters passed

37

to the generic function. This concept is identical to our Svecialized Methods

concept presented in Chapter 2. The only difference is that CLOS uses the generic

function idea to completely replace formalized "sends". Galahad continues using

the SEND concept to request service from an object; however, as soon as an object

has received a message, it uses a generic dispatch function to call the appropriate

specialized method.

Another unique feature associated with CLOS is the introduction of

around-methods. An around-method enables the programmer to specify the

exact ordering of a primary method's before and after-methods. Additionally,

around-methods enable the programmer to override the standard inheritance

mechanism and specify individual methods to be used from the inheritance lattice.

Comparison of Major Features
of Current Object-Oriented Languages

Table 3-1 shows a matrix comparing the modeling capability of each of

the above described languages and Galahad. The reader should note that a

language is credited with possessing a particular feature only if it provides explicit

support for the concept. We understand that many of the languages can be

extended to provide the indicated modeling capability; however, except where

noted, we restrict our comparison to explicitly supported features only.

To assist the reader in comparing each of the listed languages, we

include a glossary briefly describing each feature listed in Table 3-1. This

glossary is presented in Table 3-2. Except where noted, all items are discussed in

more detail in the main body of this paper.

38

z

ozo

0

EMZ Z Z O

39

0 0 0000 0 0

00 0 0 0

lu 8 0 0 0 0

0 0~ 0 0 0 0 0 0 0 03

z z z z z z z z z z

0 0 0 0 0 0 0 0 0

S

SS

0 0 0 0 0 0 0 0

S ~ z~ z z z z z

(.P E

0>

Js z z z

40

Table 3-2. Glossary of Terms

Class An object-class is a grouping of
properties which describe similar
objects. Depending on one's
perspective, it can be viewed
as either a template or a prototype.

Abstract Class An abstract class is a class that does
not allow for the creation of instances.
Instead, it is used to define properties
that will be inherited in the general-
ization hierarchy.

Simple Class A simple class is a printable data
object. Simple classes are identical
to the name class concept of the
Semantic Data Model.

Instance An instance is a member of an object-
class. An instance has its own identity
and supplies values to a class's
properties

Message Passing Message passing is the communication
protocol of the object paradigm.
Messages request behavior from objects.
Messages can also be used to transmit
information between objects.

Class Hierarchical Class hierarchical inheritance allows
Inheritance classes to acquire properties of other

classes based on their position in a
generalization hierarchy. In a class
hierarchy, each class has only one
superclass.

Instance Hierarchical Instance hierarchical inheritance allows
Inheritance instances to acquire properties from

their defining class. In an instance
hierarchy, instances have only one
defining class.

41

Table 3-2 (continued).

Class Lattice Class lattice inheritance allows
Inheritance classes to acquire properties of other

classes based on their position in a
generalization network. In a class
lattice, each class can have one or
more superclasses.

Instance Lattice Instance lattice inheritance allows
Inheritance instances to acquire properties of their

defining class(es). In an instance
lattice, instances can have more than one
defining class.

Instance Aggregations An instance aggregation is a grouping
of instances into an aggregate, or
collection. It also is a means of
relating instances to other instances.

Interclass Existence An interclass existence dependency
Dependencies is a relationship between two classes

where one class cannot exist without
the a priori existence of another class.
This term also applies to an instance of
one class depending on the prior exis-
tence of another instance.

Class Variables A class variable is a property that
pertains to the class rather than to
instances of the class. It also is used
to describe properties whose values are
shared by all instances of a class.

Class Methods A class method is a procedural
specification that defines a class's
behavior rather than the behavior of
the class's instances.

Class Specialized A class specialized method is a class
Methods method that exhibits behavior only if

the arguments passed in the message are
of a pre-specified data type.

Instance Variables An instance variable is a property that
pertains to individual instances of the
class.

42

Table 3-2 (continued).

Instance Methods An instance method is a procedural
specification the- Jefine, the behavior
of a class's instances.

Instance Specialized An instance specialized method is an
Methods instance method that exhibits behavior

only if the arguments passed in the
message are of a pre-specified data type.

Instance Specific An instance specific variable is a
Variables property that pertains only to a single

instance.

Instance Specific An instance specific method is a pro-
Methods cedural specification that pertains only

to a single instance.

Active Values An active value is a procedural
specification that defines an object's
behavior each time a class or instance
variable is accessed.

Access-To Mechanism The access-to mechanism is a constraint
that enables an object to respond
differently to a message based on the
identity of the sender. This
differentiation of behavior includes
"ignoring messages" as a possible
response.

Domain Constraints A domain constraint is a specification
that restricts the legal values a class
or instance property can assume. This
restriction is based on the class member-
ship of the value.

Cardinality Constraints A cardinality constraint is a specifica-
tion that restricts the values that can
be assigned to a class or instance
variable. This restriction is based on
the permitted number of different values
a property can assume at a given time.

43

Table 3-2 (continued).

User-Defined Class User-defined class constraints are not
Constraints covered in the text of the paper. These

constraints are class-level restrictions
that are dependent on the user's applica-
tion. User-defined class constraints are
procedural specifications. The Galahad
programmer defines them in a manner
similar to that used to create class
methods.

User-Defined Instance User-defined instance constraints are not
Constraints covered in the text of the paper. These

constraints are instance-level restric-
tions that are dependent on the user's
application. User-defined instance
constraints are procedural specifica-
tions. The Galahad programmer defines
them in a manner similar to that used to
create instance methods.

User-Defined Instance User-defined instance specific
Specific Constraints constraints are not covered in the text

of this paper. These constraints are
user-defined restrictions that apply to
a single instance. Since user-defined
instance specific constraints are
procedural specifications, the Galahad
programmer defines them in a manner
similar to that used to create instance
specific methods.

CHAPTER IV

THE GALAHAD SYSTEM

The Galahad system is designed specifically to provide Professors

Monarchi and Tegarden a tool for conceptual modeling research. This chapter

describes in technical terms how the system implements the modeling

requirements given in Chapter 2. We begin by first providing the reader with a

brief background of our development methodology and coding conventions. We

then divide the remainder of the chapter into two major sections: Galahad Basics

and Modeling Requirements Implementation.

The first section, Galahad Basics, introduces the reader to the data

structures we use to represent classes and instances. We also present the structure

of the Galahad system from both a logical and a programming perspective. We

conclude this section by discussing the coding mechanisms behind sending a

typical message in Galahad.

The second section, Modeling Requirements Implementation, discusses

the implementation of the modeling specifications presented in Chapter 2. Where

appropriate, we present the reader with segments of Galahad code. Since our

discussion will be at the coding level, we assume the reader is familiar with the

programming language TI Scheme.

45

Development Methodology

Galahad was developed using a prototyping design methodology. The

conditions lent themselves well to this approach because of the small number of

users, the relatively small size of the system, and the continually evolving

requirements specification. Also, everyone in our group was committed to see the

project through to completion.

For the purposes of system testing and acceptance, Professor Tegarden

was designated as the primary user. His main task was to verify the functionality

of the system and to make suggestions for improving the usefulness of the

language. Six different versions of the Galahad system were delivered to

Professor Tegarden for his evaluation. The average time between version

deliveries was two weeks.

Closely associated with the choice of a prototyping development

approach was our selection of an implementation environment. Successful

prototyping requires rapid turnaround of successive versions of the system.

(Pressman, 1987) In light of this fact, we chose PC Scheme, a specific

implementation of TI Scheme from Texas Instruments. The hardware on which

we operated was an IBM PS/2 model 50 (1 Hz. wait state).

Scheme is an extremely expressive language that has certain features

allowing for the rapid development of software. For example, Scheme enables the

programmer to treat all constructs in the language as first-class objects. This

minimizes restrictions on program design. Also, all data types within the language

are loosely-typed. This feature frees the programmer from formally declaring data

before they are used by the program. Finally, Scheme supports an incrementally

46

extended environment frame hierarchy. Scheme environments allow the

programmer to limit the scope of Scheme program variables. Also, environment

frames allow programmers to build incrementally-defined variable inheritance

hierarchies. The incremental definition of an inheritance hierarchy is especially

useful for those applications, such as Galahad, modeling generalization

abstraction.

Finally, another reason for our choice of PC Scheme was our familiarity

with the internal workings of the object-oriented extension to TI Scheme,

SCOOPS. We spent considerable time examining the internal representation of

SCOOPS classes, instances, and methods. This investigation providcGd us with a

good frame of reference for beginning the implementation of Galahad. Appendix

C presents the results of our SCOOPS analysis.

Coding Conventions

Since prototyping was our choice for a development methodology, the

coding effort was oriented toward rapid turnaround of Galahad versions.

Additionally, we wanted to create maintainable code for future enhancements. To

achieve both of these goals, our code followed the object paradigm whenever

possible. We specifically pursued the object paradigm during our creation of the

OBJECT class.

Additionally, we purposely traded code compactness for code simplicity.

For example during our implementation of the instance aggregation concept, we

wrote separate functions to implement Part, Element, and Member aggregations.

This functionality could have been collapsed into a single, more complex

47

procedure; however, we felt it to be more understandable (and maintainable) to

write separate, parallel code.

To improve code readability, we made extensive use of the LET

statement to assign temporary variables. We also designed variable names to be as

descriptive as possible. These two coding conventions tended to create rather

lengthy functions; however, we felt maintainability was enhanced by pursuing a

self-documenting programming style.

Galahad Basics

To best understand how we implemented the modeling requirements

presented in Chapter 2, the reader must first have basic knowledge for the overall

structure of the system. The purpose of this section is to provide this basic

knowledge. We begin by introducing the data structures used to implement both

Galahad classes and instances. We then describe the Galahad system from both a

logical and a programming perspective. We conclude by discussing the

mechanism behind sending a typical message in Galahad.

Galahad Primary Data Structures

Galahad classes and instances were implemented using Scheme's

DEFINE-STRUCTUR- statement. We chose to use scheme structures over

environments because of our requirement to model instance lattice inheritance. To

implement an instance lattice using environments would have required an

environment frame to be connected to more than one parent. Lexical scoping in

Scheme prohibits this.

48

We chose to use structures over standard Scheme vectors strictly for

convenience purposes. The DEFINE-STRUCTURE statement automatically

creates vectors, complete with default values and primitives to access each

individual slot. For simplicity, we will refer to the data structures used to

implement classes and instances as vectors throughout the remainder of this paper.

Classes. The primary data structure used to implement a Galahad class

is a 30 slot vector. Figure 4-1 shows a class vector with each individual slot

labeled. Appendix A, A Description of Galahad's Class and Instance Vectors,

contains more detailed information about each component of a Galahad class

vector.

The reader may note that the number of slots associated with a Galahad

class vector is quite large. We purposely chose to create a separate slot for Part,

Element, and Member aggregations. This was done both to simplify the code and

to underscore our implementation of the instance aggregation concepts. We also

chose to separate class and instance methods from class and instance constraints.

Again, this was done for both maintenance and accent purposes.

Instances. The data structure used to implement a Galahad instance is a

nine slot vector. Figure 4-1 shows an instance vector with each individual slot

labeled. As with the class vector, we purposely chose to create a separate slot for

Part, Element, and Member aggregations. The reader is referred to Appendix A

for details on the individual components of an instance vector.

Galahad Logical Design

The Galahad system is divided into four functional components: SEND,

CONTROL, METACLASS, and OBJECT. SEND and CONTROL serve more as

49

Class Vector

0 Galahad Class Ident"Ifer

1 Clas_ __n

3 Ow___of _

4Kid
5 Class Varlables

6 All Class Veriabbee

7 Instance Variables

8 ________n._Strctur

9 c... Cosrit Instance Vector
10 All Class Constraints

11 Instance Constrints

12 All instance Constraints 0 Instance Namea

13 Cia..l Methods 11 1 All InstanceVaebe

14 All Class Methods 2 All Pant Of

15 Instance Methods 3 All Parts

16 All Instance Methiods 4 All Elemnent Of

17 Insnce List 5 All lret

18 ftOf6 All Member Of

19 i~ ~~n ee aStructure 7Al
20 Parts 8 Instance Of

21 Inheritance Structure

22 lemntO

23 Inhero"Urs,

24 ____________

25 Ineiancll uctr
26 MemberOf

27 Inhritnce r.

28 __________

29 Inheiac All cur

Figure 4- 1. Galahad Class and Instance Vectors

50

functional subsystems within Galahad while METACLASS and OBJECT are

actual Galahad classes. These four components share a pool of universally

available support primitives. Figure 4-2 gives a graphical representation of

Galahad's logical design.

SEND. SEND is responsible for all message passing that occurs within

the system. This component sends messages by building and evaluating function

calls in the proper Scheme environment. Details about the mechanics behind a

SEND operation will be presented later in this section.

CONTROL. CONTROL monitors the user's application to ensure

compliance with all model constraints. These constraints are presented along with

Galahad's modeling requirements in Chapter 2 of this thesis.

To enforce some of the modeling constraints, CONTROL uses a

temporary storage area, called the Scratch Pad. The Scratch Pad contains a list of

those interclass links that require a "counterpart" to be considered complete. An

example of a part/counterpart interclass link is the KIND-OF/KINDS relationship.

If a user specifies that a SUBMARINE is a KIND-OF WARSHIP, CONTROL

will prohibit adding the KIND-OF link to SUBMARINE until it has encountered a

corresponding KINDS link from WARSHIP.

To enforce domain constraints, CONTROL interprets the user model in

one of two modes: DELAY-COMPILE and COMPILE. DELAY-COMPILE

allows the Galahad programmer to enter an entire model into the system without

CONTROL's enforcement of domain constraints. This feature is crucial,

especially in the modeling of interclass links where the domain of one link is a yet-

to-be defined Galahad class.

51

0I
LU

CLC

CL 3

Cl) 0

00

Clb

52

For example, a CONVOY may have a SHIP as one of its Members. For

the reverse link, SHIPs are Members-Of CONVOYs. Fur domain enforcement to

work, SHIP must be present in the system during the creation of CONVOY, and

CONVOY must be present in the system before the creation of SHIP. This

"chicken and the egg" problem is solved by CONTROL temporarily not enforcing

domain constraints while in DELAY-COMPILE-MODE. Upon the user's

invocation of the COMPILE command, DELAY-COMPILE-MODE is turned off

and the just-entered model is examined to ensure domain compliance.

METACLASS. The METACLASS component of the system has the

same purpose as METACLASS in Smalltalk. Specifically, METACLASS

contains those primitives necessary to create and modify Galahad classes. Also,

this component contains those routines necessary to complete the generalization

inheritance structure for each class. The completion of this inheritance structure is

commonly referred to as COMPILING the class.

OBJECT. Galahad's OBJECT class again follows Smalltalk's lead and

fulfills the same functions as Smalltalk's OBJECT class. OBJECT in the Galahad

system poses as the top-most class in the generalization iiiheritance hierarchy. All

user-defined classes are subordinate to this class. Consequently, all user-defined

classes inherit those variables and methods defined in OBJECT. Examples of

methods inherited from OBJECT include the instance creation procedures and

those methods reporting the contents of individual slots in the class vector.

Shared Support Pool. The shared support primitives within Galahad

are not a functionally separate component within the system. Rather, they are a set

53

of low level support routines shared by SEND, CONTROL, METACLASS, and

OBJECT. The types of functions present within this shared pool are basic list and

vector manipulation routines.

Galahad Environment Frame Design

Figure 4-3 shows the environment structure for Galahad after the system

has initially been loaded. The reader will note that five additional frames have

been added to the User Global Environment and User Initial Environment. Each

of these additional environments is briefly discussed below. Unless otherwise

noted, all references to a Scheme environment refer to the lowest frame of that

environment.

Galahad Global Environment. This environment contains the routines

in the SEND and CONTROL components of the system. It also includes all the

functions in the shared support pool. The Galahad Global Environment could

have been combined with Scheme's User Initial Environment; however, we chose

to use a separate environment to avoid mixing Galahad and Scheme primitives at

the User Initial level. This way, the boundary between Galahad and Scheme is

more clearly defined.

Galahad User Environment. This environment contains symbols

pointing to the METACLASS, OBJECT, and OBJECT-INST sub-environments.

It also contains all class and instance symbols created by the Galahad programmer

while modeling a particular application. It is, in other words, the Galahad

programmer's work area.

54

User Global Environment

User Initial Environment[GaahadGloal Eviromen

Galahad Usera Environment

OBJECT-INST
METACLASS OBJECT

CLASS%Sv0tb'

Clss Variables
Class Methods

Metaclass II
Primitives

Figure 4-3. Initial Environment Frame Structure

55

The modeler communicates directly with this environment. The system

has its own READ-EVAL-PRINT loop that evaluates in the Galahad User

Environment all user-supplied expressions. This READ-EVAL-PRINT loop was

adopted from Eisenberg and Abelson's book Programming in Scheme, and is

presented in figure 4-4. (Eisenberg, 1988) This function is the only Galahad

procedure object contained in the User Initial Environment.

The Galahad User Environment resides below the Galahad Global

Environment because the global environment contains the SEND and CONTROL

components of the system. The user must access these components while

communicating with Galahad.

METACLASS environment. The METACLASS environment

contains all METACLASS primitives used by the system. The Galahad

programmer accesses METACLASS functions by following the message passing

protocol. METACLASS resides beneath the Galahad User Environment and thus

has access to all modeler-defined symbols in the Galahad User Environment.

METACLASS has access to the shared pool, SEND, and CONTROL functions

contained in the Galahad Global Environment as well.

OBJECT environment. The OBJECT environment contains all class

variables and class methods associated with the OBJECT class. Also, this

environment contains the symbol %CLASS% which puints to the OBJECT class

vector. Since OBJECT is a class, the modeler accesses OBJECT's class variables

and methods by following the message passing protocol. Like METACLASS,

OBJECT resides beneath the Galahad User Environment. Consequently, OBJECT

has access to all symbols higher in the environment hierarchy.

56

(define start-galahad
(lambda 0

(letrec
((type-at-environment

(lambda (passed-prompt passed-environment)
(newline)
(display passed-prompt)
(let

((input-expression (read)))
(writeln (eval input-expression passed-environment))
(type-at-environment passed-prompt passed-environment)))))

(type-at-environment
"Galahad --> "
(access galahad-user-environment galahad-global-environment)))))

Figure 4-4. Code Showing the Implementation
of Galahad's READ-EVAL-PRINT Loop

57

OBJECT-INST environment. The OBJECT-INST environment

contains all instance methods associated with the OBJECT class. Unlike

OBJECT, messages are not sent directly to OBJECT-INST. Instead, OBJECT-

INST poses as a parent environment for the creation of an instance environment

during a SEND to an instance. Again, details behind the mechanics of a send will

be presented in the next section. OBJECT-INST resides beneath OBJECT. This

enables OBJECT's instance methods to have direct access to OBJECT's class

variables, class methods, and other primitives higher in the environment hierarchy.

The environment structure associated with user-defined classes is very

similar to the environment frames associated with OBJECT. For example, the

creation of the class WAR-SHIP causes WAR-SHIP and WAR-SHIP-INST

environments to be created. Figure 4-5 shows Galahad's environment structure

after an arbitrary number of user classes have been defined.

f "'e Implementation of Message Passing in GalaLad

A SEND in the Galahad system is really nothing more than a fancy

function call. The SEND macro is responsible for converting the send statement

to an S-expression suitable for a direct invocation of the desired method. This S-

expression is treated differently, depending on whether the destination of the

message is either a class or an inst, nce. If the destination is a class, the S-

expression is evaluated directly in the class's class methods environment. If the

destination is an instance, the process becomes more complicated because Galahad

instances are not modeled as environments. The primary steps involved in sending

a message to an instance are as follows:

58

I-o

A E,,

> QI

c CD - 7

E0 E

0 0

(U
LU CU

P0 2 UC

cc 0

59

1. Determine which defining class of the instance is to be used for the

processing of the message. This determination is a function of both the

intent of the message and the set of classes which define the instance.

2. Build a list of symbol/value binding pairs for the instance based on the

just determined defining class.

3. Build a temporary environment frame whose parent is the instance-

methods environment of the defining class for the instance.

4. Evaluate in that environment the S-expression built by the SEND macro.

To clarify our discussion, we will examine each step as it applies to a

specific example. Consider figure 4-6. This example is identical to that presented

in 2-5 and is repeated here for convenience. Assume we are to send to the USS

Missouri the message GET-REGISTRY. GET-REGISTRY is a method that

returns the value of the instance variable Registry. Also assume the instance is

bound to the symbol MISSOURI. The syntax for the send and selected portions of

the example's instance and class vectors are presented in figure 4-6.

Determine defining class. The defining class for the instance can be

determined in two different ways. The first is to use the optional key word

DEFAULT in the SEND statement. The second is to examine the instance's

Instance-Of slot and return the value(s) found there. Since the SEND statement

presented in figure 4-6 has no optional DEFAULT key word, we use the second

alternative. In this particular case, the contents of the Instance-Of slot is WAR-

SHIP.

60

Name: (String)
Registry: (Country)
Captain: (Officer)

TInstance Of

Name: USS Missouri
Registry: USA
Captain: Cpt. McKay

(send missouri get-registry)

ll wtn~ce Vtabi ((name. warship)
(registry. warship)
(captain. warship))

All mwoum ve((warship (name USS-Missouri)
(registry USA)
(captain Cpt-McKay)))

I; (warship)

Figure 4-6. Implementation of Message Passing

61

Build symbol/value binding pairs. After having determined thL,

appropriate defining class of the instance, we can now build a list containing the

symbol/value binding pairs of all instance variables associated with the

MISSOURI. The process is to take each variable listed in WAR-SHIP's All-

Instance-Variables-Inheritance-Structure slot and retrieve the corresponding

symbol/value pairs from the All-Instances-Variables position of the instance

vector. This process is shown graphically by the arrows in figure 4-6. The code is

presented in figure 4-7. The resulting symbol/value binding pairs for this

particular example are ((name USS-Missouri) (Registry USA) (Captain Cpt-

McKay))).

The reason for storing instance variables in an ASSOC list based on the

defi-ing class is due to the requirement for modeling instance lattice inheritance.

With instance lattice inheritance, the All-Instance-Variables slot for an instance

may contain variables with the same name. To differentiate these variables, they

must be stored with their defining class.

Build sub environment. After the symbol/value binding pairs have

been determined, Galahad builds a temporary sub-environment, which we refer to

as the instance environment. The parent of the instance environment is the

instance-methods environment of the defining class. The symbols contained in the

instance environment and their associated values are derived from the

symbol/value list created in the previous step. Figure 4-8 shows Galahad's

environment frame structure after the instance environment has been created. The

instance environment is shown as a dashed box because the environment is

62

(define-galahad-primitive build-instance-environment-iv-binding-pairs
(lambda (passed-instance-data passed-structure)

(let
((build-iv-binding-pair

(lambda (context-pair)
(iet*

((variable-name (car context-pair))
(defining-class-name (cdr context-pair))
(variable-value

(cadr
(assoc

variable-name
(cdr

(assoc defining-class-name passed-instance-data))))))
(list variable-name ",variable-value)))))

(map build-iv-binding-pair passed-structure))))

Figure 4-7. Code Showing the Construction of Environment Bindings

63

[' User Global Environment

User Initial Environment

[Galah ad Global Environment

Galahad User Environment

WAR-SHIP4NST
WAR-SHIP

, LASS%:#<cvoc

Class Variables
Class Methods

i r
Got-Registry

10taclass Object F
Registry: USA

Figure 4-8. Environment Frame Structure During the Evaluation of a Method

64

temporary and no symbol directly points to it. The environment is discarded after

the evaluation of the SEND-generated S-expression.

Evaluate function. The last step is to evaluate in the instance

environment the S-expression created by the SEND macro. For this particular

example, the SEND-generated S-expression is (GET-REGISTRY). Since GET-

REGISTRY already exists in WAR-SHIP's instance-method environment, the

evaluation proceeds smoothly and the value USA is returned.

We note that a portion of Galahad's SEND code includes a small piece

taken from a publicly available experimental version of SCOOPS. (Texas

Instruments, 1986) This code enables us to bypass a problem associated with the

lexical scoping of variables within a procedure object. For details, the reader is

referred our description of DEFINE-METHOD in Appendix C, An Analysis of

Texas Instrument's Implementation of SCOOPS in PC Scheme.

Modeling Requirements Implementation

We now turn our attention to the implementation of the requirements

presented in Chapter 2. Where applicable, we include segments of Galahad code.

Also, for convenience and continuity, we repeat the same examples presented

earlier.

Lattice Inheritance

An example of a class inheritance problem is presented in figure 4-9.

The figure also includes a sample Galahad statement to model the problem. In this

example, we have specified that the class SUBMARINE should inherit Size from

the class WATER VEHICLE. By following the conventional "depth-first up to

65

NI&LEAR POWERED WATER VEHICLE

VEHICLEMmn-Water-Level:

Fuel: (Number) (Numberl
Size: (Reactor Size: (Tons)

Size)

Fuel: (Number)
Min-Water-Level:

(Number)
Size: (Tons)I

(send 'metaclass 'create-class 'submarine
'(kind-of (nuclear-powered-vehicle)

(water-vehicle (iv size))))

Figure 4-9. Lattice Inheritance Example (Revisited)

66

joins" protocoi and the specific override from WATER VEHICLE, SUBMARINE

will assume the instance variables Fuel, Size (from WATER VEHICLE), and Min-

water-level.

Galahad builds the inheritance hierarchy during the COMPILE-CLASS

process. Specifically, COMPILE-CLASS alters the All-Instance-Variables-

Inheritance-Structure slot (vector position 8) for the SUBMARINE vector. The

order of precedence followed by COMPILE-CLASS in assigning values to the slot

is first locally defined variables, then variables identified by the user to be

inherited, and finally remaining variables contained in SUBMARINE's

superclasses, taken in left to right or'. Of course, a fundamental directive while

building the All-Instance-Variables-Inheritance-Structure is that no duplicate

variable names are permitted in the just-compiled class. Figure 4-10 shows the

segment of COMPILE-CLASS code that modifies the All-Instance-Variables-

Inheritance-Structure position.

While our example centers on the inheritance of instance variables, the

same type of procedure occurs with class variables as well. The only difference is

that COMPILE-CLASS modifies the All-Class-Variables slot rather than the All-

Instance-Variables-Inheritance-Structure position. Also, the format for the All-

Class-Variables position is different due to class variables not being subjected to

special requirements for instance lattice inheritance. The reader is referred to

Appendix A, A Description of Galahad's Class and Instance Vectors, for details.

Instance Lattice Inheritance

An example of an instance lattice inheritance problem is presented in

figure 4-11. We also include a sample Galahad statement to model the problem.

67

(define-metaclass-primitive compile-class
(lambda (passed-class-name compile-option)

(letrec
((compile-element

(lambda (class-name)
(let*

((actual-class
(eval '(access %class% ,class-name) galahad-user-environment))

(kind-of-structure (class-kind-of actual-class)))
(case compile-option

(instance-variables
(set! (class-all-instance-variables-inheritance- structure

actual-class)
(build-inheritance-list

(append
(build-variable/defining-class-list

(class-instance-variables actual-class)
(class-class-name actual-class))

(extract-instance-variable-override-values
kind-of-structure))

class-all-instance-variables-inheritance- structure
kind-of- structure))

(set! (class-all-instance-methods actual-class)
(build-inheritance-list

(class-instance-methods actual-class)
class-all-instance-methods
kind-of-structure))

(eval '(set! (access
,(class-class-name-inst actual-class)
galahad-user-environment)

(build-instance-environment ,actual-class))))

Figure 4-10. Segment of COMPILE-CLASS Code Used
to Implement Lattice Inheritance

68

PROFESSOR STUDENT

Address: {String} Address: {String}

Instan~c ~ Intnce Of

DPT

(send ('professor 'student) '%create-instance% 'dpt
'(professor address ("University of Colorado"))
'(student address ("123 Elm Street")))

Figure 4-1 1. Instance Lattice Inheritance Example (Revisited)

69

In this example, DPT is to be an instance of two classes, PROFESSOR and

STUDENT. Additionally, we have assigned the instance variable Address in

PROFESSOR to be "University of Colorado." STUDENT Address is "123 Elm

Street."

Galahad builds the DPT instance in two distinct phases. The first phase

creates the instance vector without any values assigned to any of the slots. The

second phase adds the attributes of DPT's defining classes. For this particular

example, we add PROFESSOR and STUDENT.

A defining class is added to an instance by adding another component to

the list in the All-Instance-Variables slot of the instance vector. Components are

added to the lists in the instance's instance aggregation slots as well. The CAR of

each list component is either t.e- name of the. ncvly added defining c!ass, or the

name of a defining class's superclass. The CDR of the list contains the

symbol/value pairs of variables that were locally defined for the class or class's

superclass.

The reason for decomposing a defining class into its component

superclasses is economy of storage. For example, if PROFESSOR and STUDENT

have the superclass PERSON, and PERSON contains instance variables, then

those variables need only be stored once in the vector. The CAR of the list

component in this case would be PERSON. Figure 4-12 shows a completed All-

Instance-Variables slot for the example presented in figure 4-11.

Evaluation of instance methods in an instance lattice situation occurs in

the same manner as described in the section on the implementation of Galahad

message passing. The only difference is that the SEND mechanism will process a

message using all defining classes for an instance if no class has been spe ified by

70

0

0

0

Lon 0

00

(a 0 C

CO) J Cu%100
%m *

E

4

LU

71

the user. The appropriate defining classes are derived by examining the Instance-

Of slot of the instance vector. In the example presented in figure 4-11, the

contents of this slot for the instance DPT is (PROFESSOR STUDENT).

The code presented in figure 4-13 shows the function sending messages

to an instance when the instance has multiple defining classes.

Abstract Superclasses

Figure 4-14 shows an example of an abstract superclass problem and the

accompanying Galahad statement. In this particular example, ENGINE has

instance variables Manufacturer and Diesel. Since ENGINE has been identified as

an abstract class, Galahad does not permit the instantiation of the class.

We implemented the abstract class concept by defining in OBJECT a

class variable called ABSTRACT?. This variable contains a boolean value

indicating whether or not Galahad should treat the class as an abstract entity.

Since ABSTRACT? is in OBJECT, the variable automatically is inhc rited by all

user-defined classes.

The class method %CREATE-INSTANCE% tests the value of

ABSTRACT? before allowing the class to create an instance. If ABSTRACT? is

true, %CREATE-INSTANCE% displays an error message to the user. Otherwise,

it allows the normal creation of an instance.

Simple Classes

Because simple classes are procedural definitions, they are implemented

in the system as standard Scheme procedures. The procedures reside in the

72

(define- galahad-primitive send-message-with-multiple-contexts
(lambda (passed-function-call passed-destination passed-contexts)

(if (null? passed-contexts)
the-non-printing-object

(let*
((next-context-class

(eval
'(access %class% ,(car passed-contexts))
galahad-user-environment))

(next-context-instance-environment
(eval

(class-class-name-inst next-context-class)
galahad-user-environment))

(results-of-next-send
(send-message

passed-function-call
(build- sub-environment

(build-instance-environment-binding-pairs
passed-destination
next-context-class)

next-context-instance-environment))))
(if (not (eq? results-of-next-send '%undefined-method%))

(writeln
(car passed-function-call)"evaluated in "
(car passed-contexts)"context: "
results-of-next-send))

(send- message-,with-multiple-contexts
passed-function-call
passed-destination
(cdr passed-contexts))))))

Figure 4-13. Code Showing Implementation of Mcssage Sending when an
Instance has more tian One Defining Class

73

ENGINE

Manufacturer:
(NAME}

i Displacement:
I (INTEGERI

KindKind Of

DIESEL GASOLINE

(send 'metaclass 'create-class 'engine
'(kinds diesel gasoline)
'(iv (manufacturer name (#!unassigned) (11))

(displacement integer (#!unassigned)(11)))
'(abstract))

Figure 4-14. Abstract Superclasses Example (Revisited)

74

Galahad User Environment and are invoked just like any other Scheme function.

Simple classes were not designed to respond to a message.

When creating a user-defined simple class, Galahad modifies the class

name by adding a "T' to the end of the name symbol. For example, the simple

class NAME is modified to become NAME?. This was done to be consistent with

Scheme's naming conventions for its data typing functions.

Domain/Cardinality Constraint Enforcement.

Stored with each class, instance, and instance aggregation variable is

information concerning domain and cardinality constraints. For example, the

instance variable Captain in class WAR-SHIP may have a domain of OFFICER

and a cardinality of (1 1). The specific format for the storage of this information is

presented in Appendix A.

The system enforces a variable's domain and cardinality limits each time

the variable is updated. In Galahad, all updates to a variable occur through one

function, %SET-GALAHAD%. This function, which specifically shows

constraint enforcement, is shown in figure 4-15. Galahad also uses %SET-

GALAHAD% to establish a variable's default and initial values.

The cardinality of variables is enforced by performing a test on the

length of the value list associated with each variable. For example, assume the

instance variable Registry in class WAR-SHIP has the value (USA LIBERIA).

The cardinality for this particular variable would be - ' east two.

Domain enforcement primitives are , each time the user creates a

Galahad class. The names of these primitives follow the same pattern used by

Scheme data typing functions and Galahad simple classes. For example, when the

75

(send 'metaclass 'create-class-method 'object '%set-galahad%
'(lambda ((passed-sell) (passed-variable-name) (passed-new-value-list))

(let*
((vaijable-structure

(assoc passed-variable-name
(append

(%get-all-class-variables% self)
(%get-all-instance-variables% self))))

(variable-domain (cadr variable-structure))
(variable-cardinaliry (cadddr variable-structure))
(variable-values

(if (equal? passed-new-value-list '(#!unassigned))
#!unassigned
passed-new-value-list))

(constraint-check-list
(append

(te st- value -list- for-domain-constraint
variable-values
variable-domain
'%set-galahad%
(if (not (unbound? %instance%))

(get-instance-name self)
(%get-class-name% self))

passed-variable-name)
(list

(if (invalid-cardinality?
(length variable-values)
variable-cardinality)

(galahad-ernor
2
'%set-galahad%
variable-values
variable-cardinality
passed-variable-name
(if (not (unbound? %instance%))

(get-instance-name)
(%get-class-name%))))))))

(if (constraints-satisified? constraint-check-list)
(eva

'(begin
(set! ,passed-variable-name ',variable-values)
(if (not (unbound? %instance%))

(set!
(instance-all-iv %instance%)
(%build- new-instance-data-list%

(cdr
(assoc',passed-variable-name

(%get-all-instance-variables-inheritance-su-ucture%
self)))'.passed-variable-name

',variable-values

(instance-all-iv %instance%))))
(list '.passed-variable-name ',variable-values)))

the- non-printing-object)))
'nocompile)

Figure 4-15. %SET-GALAHAD%

76

class STUDENT is built, a function is created called STUDENT?. STUDENT? is

the primitive that tests class membership within the STUDENT class.

Specialized Methods

An example of a situation requiring specialized methods is presented in

figure 4-16. We also include sample Galahad statements to model the instance

methods which specialize on the Missile threat. For this particular case, these

specialized methods directly call functions responsible for firing various weapon

systems.

Galahad models specialized methods in a manner that is very similar to

the graphical representation of the example. Specifically, located in WAR-SHIP's

class methods environment are two symbols associated with the Defend-Self

method: DEFEND-SELF and DEFEND-SELF-DISPATCH-TABLE. The

contents of each symbol is shown in figure 4-17. For clarity, DEFEND-SELF is

shown in source code format. The source code was generated by the Galahad

routine CREATE-INSTANCE-METHOD.

DEFEND-SELF is the dispatching procedure that calls the appropriate

specialized method based on the data type of the parameters passed to the

dispatching routine. DEFEND-SELF uses DEFEND-SELF-DISPATCH-TABLE

to determine the proper procedure to call.

Each sublist contained in the dispatch table corresponds to one

specialized method. A sublist consists of names of data typing functions and a

pointer to the specialized method. The dispatching routine uses the typing

functions to determine whether the specialized method contained in the sublist is

the appropriate routine to call.

77

WAR SHIP Missile Threat

Methods:
Defend-Self Dfend-Sell Ship Threat

iAircraft Threat

(send 'metaclass 'create-instance-method 'warship
'defend-self
'(lambda ((threat missile))

(fire-phalyx-guns)))

(send 'metaclass 'create-instance-method 'warship
'defend-self
'(lambda ((threat ship))

(fire-harpoon-missile)))

(send 'metaclass 'create-instance-method 'warship
'defend-self
'(lambda ((threat aircraft)).

(fire-sparrow-missile)))

Figure 4-16. Specialized Methods Example (Revisited)

78

DEFEND-SELF:

(lambda (threat)
(eval

(append
(retrieve-proper-method- for- argument-types

defend-self-dispatch- table
(append

(list threat)
0))

(build-list-of-quoted-objects
(append

(list threat)

DEFEND-SELF-DISPATCH-TABLE:

((missile? #<procedure>)
(ship? #<procedure>)
(aircraft? #<procedure))

Figure 4-17. Code Showing the Implementation of Specialized Methods

79

For example, assume the method DEFEND-SELF is called with a

parameter of MISSILE-1. MISSILE-1 is an instance of the class MISSILE. The

dispatching procedure (DEFEND-SELF) examines each sublist in DEFEND-

SELF-DISPATCH-TABLE to search for the specialized method. In this particular

case, the first sublist would point to the proper specialized method because

MISSILE-I would pass the MISSILE? class membership test. Had the threat been

SHIP-1 instead, SHIP- 1 would fail the MISSILE? test, but would pass the SHIP?

test. For SHIP-i, the specialized method associated with a SHIP threat would be

called.

Instance Aggregation

An example of Member instance aggregation is presented in figure 4-18.

As we have done with our other examples, we include sample Galahad statements.

These statements build the Members/Member-Of connections between the classes

WAR-SHIP and CONVOY.

For the implementation of instance aggregation, we treated the Part,

Element, and Member aggregation concepts as though they were instance

variables with a few notable exceptions. The exceptions are as follows:

1. Part, Element, and Member have their own individual slots in Galahad

class and instance vectors.

2. Galahad monitors the user's model to ensure the programmer has

included forward and reverse links on an instance aggregation

connection. For example, if the class WAR-SHIP is given a Member-Of

link to CONVOY, the system waits for the corresponding Members link

80

z U)

ca

EE

-LL

LuI WCO U)40 U) U)
U)6Cc '0 - 00

z

000

81

from CONVOY to WAR-SHIP before altering either the CONVOY or

WAR-SHIP class. This monitoring of the user's model was

implemented using the Scratch Pad concept described earlier.

3. Instance aggregation connections defined at the class level do not

require a default value. Instance aggregation connections need a

specification for on!y cardinality constraint enforcement.

4. Instance aggregations connections stored at the instance level have the

capability for storing the defining class of an instance connection. For

example, assume the example shown in figure 4-18 has been modified to

become figure 4-19. In this particular case, we still have the Member-

Of/Members connection between WAR-SHIP and CONVOY; however,

the individual instances are now members of subclasses of WAR-SHIP

instead of WAR-SHIP itself. The Member-Of/Members connection still

applies to the Missouri, New Jersey, and Benjamin Franklin; but

Galahad must account for the Missouri and New Jersey being battleships

and the Benjamin Franklin being a frigate. To do this, the system -)res

in the All-Members slot of the instance K12 the list shown in figure 4-

19.

82

Name. NAME)Name: (NAME)

B A T T ~ rIH 1 111 - F IG AInstance/Class

4 k Boundary

Misui New Jersey BenjaminNaeK1

All-Members-SIot of K12

((war-ship (battlec'lip missouri new-jersey)
(frigate Denjamin-franklin)))

Figure 4-19. Instance Aggregation: Differentiation Among Different Subclasses

CHAPTER V

DIRECTIONS FOR FUTURE RESEARCH AND CONCLUSION

As with any research project, our implementation of Galahad has

uncovered many areas for further study. Also, there are several small coding

problems that still need to be addressed. The parpose of this chapter is to identify

these directions for future coding and research. For those areas requiring further

code writing, we include a brief discussion on the general approach the

programmer should take.

We begin this chapter by first describing the minor programming tasks

tnat reanain to be done. We then discuss directions for additional functionality to

be added to the system. We conclude by offering our insights for the future role of

Galahad at the University of Colorado.

Minor Programming Tasks

This section describes the programming details we purposely bypassed

in our attempt to achieve the greatest functionality over the shortest period of time.

While these details are not crucial for the demonstrated success of Galahad, they

are important if the system is ever to become a commercially viable product.

84

Modification of Instance Aggregation Specifications to Include Specific
Support for the Logical Operators AND, OR, and XOR.

Galahad allows programmers to model instance aggregation concepts;

however, it does not provide explicit support for the logical operators AND, OR,

and XOR. An example of a situation requiring a logical operator would be a

CONVOY having WAR-SHIPs, FREIGHTERs, OR TANKERs as valid Members.

A Galahad programmer can model AND and OR concepts in the current system by

using the cardinality associated wit'., an instance aggregation specification;

however, explicit support for these operators would make the relationship among

aggregations more clear.

One way to implement AND and OR connections on instance

aggregations is to test for the appropriate key word and then internally represent

within the class vector AND specifications as having a lower cardinality of 1 and

ORs with a lower cardinality of 0. Unfortunately, this does not work for the XOR

operator. To implement XOR, the programmer must modify the instance-level

instance aggregation routines.

Modification of Constraint Enforcement to Include Removal of Partially

Completed Transactions

The current version of Galahad detects all constraints as specified by the

requirements presented in Chapter 2; however, the CREATE-CLASS and

%CREATE-INSTANCE% routines must be altered to reverse those definitions

when a constraint has been violated. For example, assume the user creates the

instance USS-Missouri, but fails to specify a value for the required instance

variable Captain. The current system will detect the omission of this required

instance variable, but it will not delete the just-created instance USS-Missouri.

85

Similarly, if there is a constraint violation during the creation of a class, Galahad

will detect the violation, but it will not remove the partially specified class from

the system.

To implement the removal of partially completed transactions, the

programmer must first develop the DELETE-CLASS-VARIABLES, DELETE-

INSTANCE-VARIABLES, DELETE-CLASS-FROM-INSTANCE, and

DELETE-CLASS primitives. After developing this functionality, the programmer

can then modify CREATE-CLASS and CREATE-INSTANCE to use these

primitives if a constraint violation has been detected. The system knows whenever

a constraint has been violated because the routines detecting a violation always

return the Scheme object *THE-NON-PRINTING-OBJECT*.

Modification of COMPILE-CLASS to Enable Changes in Class Structure to

be Propagated to Instances.

COMPILE-CLASS in the current system modifies the structure of only

Galahad classes. COMPILE-CLASS needs to be altered so that a class's instances

reflect any structural changes made to their defining class. For example, assume

the class WAR-SHIP has the instance USS-Missouri. If we add a new instance

variable to WAR-SHIP, such as Crew-Size, this addition should be reflected in the

instance USS-Missouri.

For COMPILE-CLASS to reflect this class-to-instance "link," the

programmer must write code that compares all the slots of a class vector with the

corresponding positions in an instance vector. If any additions are needed to an

instance's All-Instance-Variables slot, then COMPILE-CLASS must make the

necessary modifications. If the instance contains an attribute that no longer

applies to its defining class, the instance should be flagged as "invalid."

86

Additionally, this code must re-check the domain and cardinality constraints for all

values stored with the instance. This is necessary because a domain or cardinality

specification might be altered in a class and this change needs to be reflected in the

class's instances.

Modification of %ADD-CLASS.TO-INSTANCE % to Test for an Abstract

Class

The current version of Galahad tests to see whether a class is abstract at

instance creation time. If a class has been identified by the user to be an abstract

entity, then the system prohibits the creation of the instance. Unfortunately, this

test for abstraction should occur when a class is added to an instance rather than

when the instance is creqted. For example, assume we creitte the instance DPT

which is an instance of both the PROFESSOR and STUDENT classes. Also

assume the STUDENT class is defined to be an abstract entity. The current

version of the system allows STUDENT to be added to DPT. This should not be

permitted.

To implement this, the programmer must add an ABSTRACT? test to

the routine %ADD-CLASS-TO-INSTANCE%. If a class has been specified by

the user as being ABSTRACT, then %ADD-CLASS-TO-INSTANCE% must

prohibit the addition of the class to the instance. Also, the programmer may want

to leave the ABSTRACT? test in %CREATE-INSTANCE%. This way, an

instance vector will not be created if the first class to be added to an instance is

labeled as being ABSTRACT.

87

Modification of DELETE-CLASS-METHOD and DELETE-INSTANCE-
METHOD to Account for Specialized Methods

The current version of the system deletes class and instance methods by

entirely removing both the method's dispatching function and the dispatch table.

These functions must be altered so they remove only an entry from the dispatch

table. If the dispatch table is empty after removal of an entry, the Galahad

function can then remove the dispatching routine.

To implement, the programmer must write a low-level routine that

deletes individual entries from the dispatch table. The DELETE-CLASS-

METHOD and DELETE-INSTANCE-METHOD routines must also be able to

detect when a dispatch table is empty. If the table is empty, then the dispatch

function and the table must be removed from the appropriate slots in the class

vector. Low level vector manipulation routines are already in place to remove

symbol/procedure pairs from a class's Class-Methods and Instance-Methods slots.

Modification of Class Inheritance to Include Selective Overrides for Class and

Instance Methods.

The current Galahad system allows the programmer to override the

"depth-first up to joins" lattice inheritance rule for only class and instance

variables. The capability is needed for a modeler to select specific class and

instance methods as well.

To implement, the programmer must make minor changes to the

COMPILE-CLASS function. The changes required would be very similar to those

used by COMPILE-CLASS to implement class and instance variable overrides.

88

Additional Functionality

This section describes those areas of Galahad system where additional

functionality still needs to be added. Some of the functions we present below were

not implemented because they fell victim to other, more pressing details. Other

functions we describe were not implemented because they involve theoretical

issues we have not yet completely resolved. In those cases requiring further

conceptualization, we identify the issues under investigation.

The Role Concept for Viewing Data

An issue related to the instance lattice inheritance concept is the

interpretation of queries in terms of "roles" rather than contexts. For conceptual

modeling, the term "role" implies semantics different from our use of the word

"context." We have been referring to contexts in the sense of the defining class of

an instance. Roles, on the other hand, imply something different. Unfortnately,

the term has different interpretations based on one's individual perspective.

Because of these different definitions for a "role", we have not come up with our

particular interpretation for implementation in Galahad. This is one area that

requires more conceptualization before being crystalized in code.

Before, After, and Around Methods

The Common LISP Object System (CLO) provides its programmers

with the capability for adding before, after, and -)d-methods to a class or

instance primary method. (Keene, 1989) Before-methods and after-methods

provide the programmer with added flexibility in describing the behavior of an

object. Before-methods are automatically called before the primary method is

89

invoked. After-methods are called after the primary method has finished.

Around-methods can be viewed as "supervisory" methods because they can alter

the sequence of calls to before, primary, and after-methods.

An illustration of before, after, and around-methods can be shown with

our WAR-SHIP example and the primary method Defend-Self. An around-

method to Defend-Self may (and probably should) be to verify that an approaching

threat is hostile. If the threat is hostile, the around-method would then permit the

before, primary, and after-methods to be called. Otherwise, the around method

would bypass the standard calling sequence and return WAR-SHIP to the status

quo. An example of a before-method for Defend-Self may be to Track-Target.

An example of an after-method may be to Verify-Threat-Destruction.

To implement these concepts, the programmer probably will have to

overhaul the method evaluation code in the current version of Galahad.

Mechanisms need to be added that will provided explicit support for the

programmer to specify the before, after, and around-methods to be tied to the

primary method. Also, since a subclass may call before and after-methods of one

of its superclasses, the programmer must ensure a "Send to Super" mechanism is

in place.

Dependent Classes and Dependent Instances

The interclass existence dependency modeling requirement presented in

Chapter 2 was the only coding specification not implemented in this version of

Galahad. To implement inter-class and inter-instance dependencies, the

programmer must develop two new "links", complete with reverse connections,

between classes.

90

The first link is a CLASS-DEPENDENT-ON/CLASS-DEPENDENTS

connection which identifies a Galahad class as being existent dependent on

another class. To implement this link, the programmer should parallel the code

used to implement the KIND-OF/KINDS connections. The programmer must also

alter the DELETE-CLASS routine so that the function also deletes all classes

indicated by the CLASS-DEPENDENTS connection.

The second link is a INSTANCE-DEPENDENT-ON/INSTANCE-

DEPENDENTS connection between instances. The same concepts apply as

described above; however, they apply only to instances.

The need for these two separate links is due to those situations where

one instance is dependent on another, but their defining classes are not. For

example, consider an object-oriented database modeling EMPLOYEE as a

subclass of PERSON. Also assume EMPLOYEE has an instance variable

Dependents whose domain is PERSON. Obviously the instances of the

dependents of an employee are existent dependent on the employee. However, the

class PERSON is not existent dependent on EMPLOYEE.

Send to Super

The current system has no standardized mechanism for a class to send

messages to its immediate parent(s). This capability is crucial if a Galahad class

has overridden a superclass method and it needs access to the overridden method.

For example, consider our WAR-SHIP example where BATTLESHIP is a

subclass of WAR-SHIP. Assume the Defend-Self method for BATTLESHIP has

overridden Defend-Self in WAR-SHIP. Also assume BATTLESHIP does not

have a specialization for defense against a SUBMARINE attack; however, the

91

WAR-SHIP method does. BATTLESHIP needs to send a message to its

superclass, WAR-SHIP, to Defend-Self.

To implement the "Send to Super" concept, the programmer must alter

the SEND macro so that the key word SUPER automatically translates to the

class's immediate superclass. For example, if BATTLESHIP issues (send super

defend-self), SEND must translate this to (send WAR-SHIP defend-self). This

translation can be done by accessing the Kind-Of slot of the class sending the

message. To account for lattice inheritance, assume "Send to Super" means the

first listed superclass in the class's KIND-OF slot. If the user needs to access

another superclass in the lattice, then probably the best solution would be to

require the user to specify the exact super class desired. That is, the specific name

of the superclass will be used in place of the SUPER key word in the message.

DELETE-CLASS

Galahad allows only for the creation of classes. No DELETE-CLASS

capability exists. The DELETE-CLASS function is required if the Galahad

programmer is to be spared from having to reset the system and completely reload

the model for each minor change made to a Galahad class.

To implement the DELETE-CLASS function, the programmer needs to

unbind the symbols pointing to the class's class-methods and instance-methods

environment. Also, code must be written to verify that all inter-class connections

associated with the deleted class are either properly deleted or labeled as being

"invalid." This specifically includes all KIND-OF/KINDS, MEMBER-

OF/MEMBERS, ELEMENT-OF/ELEMENTS, and PART-OF/PARTS links.

92

Additionally, instance and class variables whose domain is the now deleted class

must also be labeled as being "invalid."

DELETE-CLASS-FROM-INSTANCE

The current system allows a class only to be added to an instance. The

inverse function has never been implemented. The DELETE-CLASS-FROM-

INSTANCE function is required if Galahad is to delete a class and propagate the

class deletion among all the class's instances.

To implement, the programmer must first decompose the class identified

for deletion into its component superclasses. This expansion is required because

an instance vector stores all variable and aggregation values by their locally

defined classes. For clarification, see our discussion on Instance Lattice

Inheritance in Chapter 4.

After decomposing a class, the programmer must write code that reads

each component of the decomposition and removes all references of the

component from all slots of the instance vector.

Particular attention must be made to ensure no needed class component

is accidently removed. For example, assume PROFESSOR and STUDENT are

the defining classes for the instance DPT. Also, assume these classes are

subclasses of PERSON. To remove the PROFESSOR class from DPT, we first

decompose PROFESSOR into PROFESSOR, PERSON, and OBJECT. We must

not remove the PERSON and OBJECT components from DPT because they are

still required by the STUDENT class.

93

DELETE-CLASS-VARIABLES/DELETE-INSTANCE-VARIABLES

The current version of Galahad has primitives to add new class and

instance variables to a class. Unfortunately, we did not build commands to delete

variables from an existing class.

To provide this functionality, the programmer can parallel the code used

to create ADD-CLASS-VARIABLES and ADD-INSTANCE-VARIABLES. The

main difference is to replace the low level primitives that add a new variable to a

class vector slot with those that delete a variable from a slot. The programmer

must be aware that when deleting a class/instance variable, he/she must also

remove the GET/SET methods that went with the variable. Also, after a variable

has been deleted, the class must be recompiled to ensure the change is propagated

throughout ie hierarchy.

SET-CLASS-VARIABLE-DOMAIN/SET-INSTANCE-VARIABLE-

DOMAIN

The current system does not allow the Galahad programmer to alter the

domain of an existing class or instance variable. Instead, the modeler is forced to

redefine the entire Galahad class.

To implement the above statements, the programmer needs to write a

routine that modifies the second position of a class or instance variable's

specification quadruplet. For example, assume the instance variable Registry in

WAR-S-HP is stored in the WAR-SHIP vector as (Registry COUNTRY

(#!UNASSIGNED) (1 1)). This routine must be able to change COUNTRY to

another value. The programmer must also write code to verify the variable's

default value still passes the membership test for the newly specified domain.

Also, if the domain for a class variable has been modified, the code must re-check

94

the current value of the class variable to ensure domain compliance as well.

Finally, the class needs to be recompiled to propagate the change throughout the

class and instance hierarchies.

SET-CLASS-VARIABLE-CARDINALITY/SET-INSTANCE- VARIABLE-

CARDINALITY

The current version of the system does not allow the Galahad

programmer to alter the cardinality of a currently existing class or instance

variable. Instead, the modeler is forced to redefine the entire Galahad class.

To implement the above Galahad statements, the programmer needs to

write a routine that performs functions similar to those described in the previous

section. The only difference is the code must alter a quadruplet's fourth position

instead of its second.

DESCRIBE

Galahad does not have any provision for the modeler to print a user-

readable description of Galahad classes and instances. The closest commands are

%GET-CLASS% and GET-INSTANCE which returns non-edited versions of a

class or instance vector.

To implement a Galahad DESCRIBE statement, the programmer can

write code that examines each individual slot of a class or instance vector and

pretty prints the result. The programmer may want to decompose variable and

aggregation specifications into their domain, default value, and cardinality

components. This way, these individual components can be labeled as they are

printed.

95

CONCLUSION

Beyond doubt, Galahad has proven to be a smashing success. Not only

has it demonstrated the feasibility of Professors Monarchi and Tegarden's

conceptual modeling ideas, but also it has provided us with a solid framework for

continued research. Another unexpected, but delightful, benefit of our work has

been the perfection of ou ideas due to rigors of computer programming. By

translating the Galahad specification into a formal computer model, we were

forced to fill in many details that initially were overlooked.

Admittedly, much more work is needed. Galahad is currently a

prototypical system; however, over the past eight months we have laid a solid

conceptual and program foundatio, for the continued advancement of the Galahad

design. The system, while designed in an prototypical environment, was

engineered for maintainability.

BIBLIOGRAPHY

1. Abelson, H., G. J. Sussman, J. Sussman (1985) Structure and
Interpretation of Computer Programs, Cambridge, Massachusetts: The
MIT Press, McGra,. Hill.

2. Alagic, S. (1986) Relational Database Technology, Springer Verlag,
New York.

3. Bobrow, D. G. and M. Stefik (1983) The Loops Manual, Palo Alto,
California: Xerox Corporation.

4. Booch, G. (February 1986) "Object-Oriented Development", IEEE
Transactions on Software Engineering, SE- 12(2), pp. 211-221.

5. Borgida, A., S. Greenspan, J. Mylopoulos (April 1985) "Knowledge
Representation as the Basis for Requirements Specifications", IEEE
Computer, 18(4), pp. 82-90.

6. Chen, P. P. (March 1976) "The Entity-Relationship Model - Toward a
Unified View of Data", ACM Transactions on Database Systems, 1 (1),
pp. 9-37.

7. Control Data Corporation (1969) SIMULA General Information Manual,
Palo Alto, California: Control Data Corporation.

8. Control Data Corporation (1975) SIMULA Version I Reference Manual,
Sunnyvale, California: Control Data Corporation.

9. Dahl, O.J. and Nygaard, K. (1966) "SIMULA - An ALGOL-Based
Simulation Language", Communications of the ACM, 9, pp. 671-678.

10. Dybvig, R. K. (1987) The Scheme Programming Language, Englewood
Cliffs, New Jersey: Prentice-Hall.

11. Eisenberg, M. (1988) Programming in Scheme, Ed. H. Abelson,
Redwood City, California: The Scientific Press.

12. Gibbs, S. J. (1985) "Conceptual Modelling and Office Information
Systems", in Office Automation: Concepts and Tools, ed. D. Tsichritzis,
Springer Verlang, New York.

97

13. Goldberg, A. and Robson, D. (1983) Smalltalk-80: The Language and
its Implementation, Reading, Massachusetts: Addison-Wesley.

14. Hammer, M. and D. McLeod (1978) "The Semantic Data Model: A
Modelling Mechanism for Database Applications" Proceedings 1978
ACM SIGMOD International Conference on the Management of Data,
Austin, Texas.

15. Hammer, M. and D. McLeod (September 1981) "Database Description
with SDM: A Semantic Database Model", ACM TODS, 6(3), pp. 351-
386.

16. Keene, S. E. (1989) Obiect-Oriented Programming in Common Lisp: A
Programmer's Guide to CLOS, Reading, Massachusetts: Addison-
Wesley.

17. Ledbetter, L. and B. Cox (June 1985) "Software-ICs", Byte, 15(6), pp.
307-315.

18. Monarchi, D. E., D. P. Tegarden, M. M. Nickson (1988) "The
Representation and Implementation of Aggregation Hierarchies in an
Object Oriented Language" Proceedings ORSA/TIMS, Denver,
Colorado.

19. Moon, D. A., (1986) "Object-Oriented Programming with Flavors"
Proceedings ACM 1986 OOPSLA Conference, pp. 1-8.

20. Pascoe, G. A. (August 1986) "Elements of Object-Oriented
Programming", Byte, 16(8), pp. 307-316.

21. Pressman, R. S. (1987) Software Engineering: A Practitioner's
Approach, New York, New York: McGraw-Hill.

22. Schmucker, K. J. (August 1986) "Object-Oriented Languages for the
Macintosh", Byte 16(8), pp. 177-185.

23. Stefik, M. and D. Bobrow (Winter 1986) "Object-Oriented
Programming: Themes and Variations", The Al Magazine, 6(4), pp. 40-
62.

24. Texas Instruments (1986) An Experimental Version of SCOOPS (Source
Code), Dallas, Texas: Texas Instruments.

25. Texas Instruments (1987a) PC Scheme User's Guide, Dallas, Texas:
Texas Instruments.

26. Texas Instruments (1987b) TI Scheme Language Reference Manual,
Dallas, Texas: Texas Instruments.

98

27. The Whitewater Group (1987) Actor Language Manual, Evanston,
Illinois: The Whitewater Group.

28. The Xerox Learning Research Group (August 1981) "The Smalltalk-80
System", Byte, 6(8), pp. 36-48.

APPENDIX A

A DESCRIPTION OF GALAHAD'S CLASS
AND INSTANCE VECTORS

The purpose of this appendix is to provide the reader a brief analysis of

Galahad's class and instance vectors. The information conveyed in this section is

meant to supplement the material presented in Chapter 4, The Galahad System.

This appendix is not to be considered complete unless accompanied by the main

text of this paper.

Galahad Class Vector

The 30 slot vector we used to implement Galahad classes is described

below. Items appearing entirely in capital letters should be interpreted as literals.

Ellipses indicate that a particular list or atom is repeated as many times as

necessary.

Vector Position 0

Label. Galahad Class Identifier

Format. GALAHAD-CLASS

Description. This position is a label indicating the vector represents a
Galahad class.

Vector Position 1

Label. Class Name

100

Format. Classname

Description. The Class Name position identifies the name of the Galahad
class represented by this particular vector. The Galahad system uses this
position whenever it needs to retrieve the name of the class. The Class
Name slot is assigned its value during the CREATE-CLASS process.

Vector Position 2

Label. Class Instance Methods Environment Symbol

Format. Classname-INST

Description. This slot identifies the name of the class's instance method
environment. The COMPILE-CLASS function of Galahad refers to this
position when it needs to bind a newly created instance method
environment to the symbol contained in this slot. This position is
assigned its value during the CREATE-CLASS process.

Vector Position 3

Label. Kind Of

Format. ((Classname
(CV Classvar Classvar... Classvar)
(IV Instvar Instvar... Instvar))

(Classname
(CV Classvar Classvar... Classvar)
(IV Instvar Instvar... Instvar)))

Description. The Kind Of vector position contains the names of the class's
immediate parents in the generalization hierarchy. It also contains those
class variables (CV) and instance variables (IV) to be specifically
included in the class's inheritance structure. The COMPILE-CLASS
function of Galahad uses this slot to build the class's inheritance
hierarchy. This position is assigned its value based on the KIND-OF
clause passed to CREATE-CLASS. It also can be assigned a value from
direct use of the ADD-KIND-OF statement.

Vector Position 4

Label. Kinds

Format. ((Classname)(Classnae)... (Classname))

101

Description. This slot contains the names of the class's immediate children
in the inheritance hierarchy. The Galahad system uses this list during
the COMPILE-CLASS process to propagate class variables, instance
variables, class methods, and instancc -methuds to the class's children.
This position is assigned its value based on the KINDS clause passed to
CREATE-CLASS. It also can be assigned a value from direct use of the
ADD-KINDS statement.

Vector Position 5

Label. Class Variables

Format.
((Classvar domain (value... value) (1-card u-card))
(Classvar domain (value... value) (]-card u-card))

(Classvar domain (value ... value) (1-card u-card)))

Description. The Class Variables position contains the symbol name,
variable domain, default value list, and cardinality quadruplet for each
locally def.ined class variable. The Galahad system uses the values in
this position as a kernel for building the All Class Variables slot (vector
position 6). This position is assigned its value based on the CV clause
passed to CREATE-CLASS. It also can be assigned a value from direct
use of the ADD-CLASS-VARIABLES statement.

Vector Position 6

Label. All Class Variables

Format.
((Classvar domain (value... value) (1-card u-card))
(Classvar domain (value... value) (1-card u-card))

(Classvar domain (value'... value) (1-card u-card)))

Description. This slot contains the symbol name, variable domain, default
value list, and cardinality quadruplets for both locally defined and all
inherited class variables. The COMPILE-CLASS function of Galahad
both uses and assigns values to this slot. COMPILE-CLASS frst
assigns values to this position based on the class's inheritance hierarchy.
It then uses this position as it builds the class- variables/class-methods
environment. Also, the domain and cardinality of this position are
referenced each time an individual class variable receives a new value.

102

Vector Position 7

Label. Instance Variables

Format. ((Instvar domain (value... value) (1-card u-card))
(Instvar domain (value... value) (1-card u-card))

(Instvar domain (value... value) (1-card u-card)))

Description. The Instance Variables position contains the symbol name,
variable domain, default value list, and cardinality quadruplet for each
locally defined instance variable. The Galahad system uses the instance
variables listed in this position as a kernel for building the All Instance
Variables Inheritance Structure slot (vector position 8). Also, the
domain and cardinality of this position are referenced each time an
individual instance variable receives a new value. This slot is assigned
its value based on the IV clause passed to CREATE-CLASS. It also can
be assigned a value from direct use of the ADD-INSTANCE-
VARIABLES statement.

Vector Position 8

Label. All Instance Variables Inheritance Structure

Format.
((Instvar. Classname)(Instvar. Classname)
(Instvar. Classname)(Instvar. Classname)

(Instvar. Classname)(Instvar. Classname))

Description. This position contains the symbol/defining-class pairs for both
locally defined and all inherited instance variables. The COMPILE-
CLASS function of Galahad both uses and assigns values to this slot.
COMPILE-CLASS first assigns values to this position based on the
class's inheritance hierarchy. It then uses this position to build the
instance environments needed for instance method evaluation.

Vector Position 9

Label. Class Constraints

103

Format. ((Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

(Methodname" <#PROCEDU RE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

Description. The Class Constraints slot contains the method-
name/procedure-object and the dispatch-table/table pairs for locally
defined class constraint-methods. These methods have been specified
by the user to be procedures to enforce user-defined constraints in a
Galahad application. The reader is referred to the section on method
specialization for details on the relationship between methods and
method dispatch tables. The COMPILE-CLASS function uses this slot
as a kernel for building the All Class Constraints position (vector
position 10). A new constraint-method is added to this slot each time
the user calls CREATE-CLASS-CONSTRAINT. Conversely,
constraint-methods can be removed from this position by DELETE-
CLASS-CONSTRAINT as well.

Vector Position 10

Label. All Class Constraints

Format. ((Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

(Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

Description. This slot contains the method-name/procedure-object and the
dispatch-table/table pairs for both locally defined and all inherited class
constraint-methods. These methods have been specified by the user to

104

be procedures to enforce user-defined class level constraints in a
Galahad application. The reader is referred to the section on method
specialization for details on the relationship between methods and
method dispatch tables. The COMPILE-CLASS function of Galahad
both uses and assigns values to this slot. COMPILE-CLASS first
assigns values to this position based on the class's inheritance hierarchy.
It then uses this position as it builds the class's class-variables/class-
methods environment.

Vector Position 11

Label. Instance Constraints

Format. ((Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

(Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain? ... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

Description. The Instance Constraints slot contains the method-
name/procedure-object and the dispatch-table/table pairs for locally
defined instance constraint-methods. These methods have been
specified by the user to be procedures to enforce user-defined constraints
in a Galahad application. The reader is referred to the section on method
specialization for details on the relationship between methods and
method dispatch tables. The COMPILE-CLASS function uses this slot
as a kernel for building the All Instance Constraints position (vector
position 12). A new constraint-method is added to this slot each time
the user calls CREATE-INSTANCE-CONSTRAINT. Conversely,
constraint-methods can be removed from this position by DELETE-
INSTANCE-CONSTRAINT as well.

Vector Position 12

Label. All Instance Constraints

105

Format. ((Methodnane <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

(Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

Description. This slot contains the method-name/procedure-object and the
dispatch-table/table pairs for both locally defined and all inherited
instance constraint-methods. These methods have been specified by the
user to be procedures to enforce user-defined instance level constraints
in a Galahad application. The reader is referred to the section on method
specialization for details on the relationship between methods and
method dispatch tables. The COMPILE-CLASS function of Galahad
both uses and assigns values to this slot. COMPILE-CLASS first
assigns values to this position based on the class's inheritance hierarchy.
It then uses this position as it builds the class's instance-methods
environment.

Vector Position 13

Label. Class Methods

Format. ((Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

(Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain? ... domain? <#PROCEDURE>)))

Description. The Class Methods slot contains the method-name/procedure-
object and the dispatch-table/table pairs for locally defined class
methods. The reader is referred to the section on method specialization
for details on the relationship between methods and method dispatch

106

tables. The COMPILE-CLASS function uses this slot as a kernel for
building the All Class Methods position (vector position 14). A new
method is added to this slot each time the user calls CREATE-CLASS-
METHOD. Conversely, class methods can be removed from this
position by DELETE-CLASS-METHOD as well.

Vector Position 14

Label. All Class Methods

Format. ((Methodname <#PROCEDURE>)
(Methodnarne-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

(Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

Description. This slot contains the method-name/procedure-object and the
dispatch-table/table pairs for both locally defined and all inherited class
methods. The reader is referred to the section on method specialization
for details on the relationship between methods and method dispatch
tables. The COMPILE-CLASS function of Galahad both uses and
assigns values to this slot. COMPILE-CLASS first assigns values to this
position based on the class's inheritance hierarchy. It then uses this
position as it builds the class's class-variables/class-methods
environment.

Vector Position 15

Label. Instance Methods

107

Format. ((Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?'... domain? <#PROCEDURE>)))

(Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain? ... domain? <#PROCEDURE>)))

Description. The Instance Methods slot contains the method-
name/procedure-object and the dispatch-table/table pairs for locally
defined instance methods. The reader is referred to the section on
method specialization for details on the relationship between methods
and method dispatch tables. The COMPILE-CLASS function uses this
slot as a kernel for building the All Instance Methods position (vector
position 15). A new method is added to this slot each time the user calls
CREATE-INSTANCE-METHOD. Conversely, methods can be
removed from this position by DELETE-INSTANCE-METHOD as
well.

Vector Position 16

Label. All Instance Methods

Format. ((Methodname <#PROCEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain?... domain? <#PROCEDURE>)

(domain?... domain? <#PROCEDURE>)))

(Methodname <#Pi6CEDURE>)
(Methodname-DISPATCH-TABLE

((domain?... domain? <#PROCEDURE>)
(domain? ... domain? <#PROCEDURE>)

(domain?... domain? <#PROCEDURE>)))

Description. This slot contains the method-name/procedure-object and the
dispatch-table/table pairs for both locally defined and all inherited
instance methods. The reader is referred to the section on method
specializaition for details on the relationship between methods and
method dispatch tables. The COMPILE-CLASS function of Galahad

108

both uses and assigns values to this slot. COMPILE-CLASS f'rst
assigns values to this position based on the class's inheritance hierarchy.
It then uses this position as it builds the class's instance-methods
environment.

Vector Position 17

Label. Instance List

Format. (Instance-name Instance-name

Instance-name)

Description. The Instance List contains the names of instances defined for
the class. It is used by Galahad class membership testing primitives to
determine whether or not an instance, passed as a parameter, is a valid
instance of the class. A new instance is added the class's Instance List
slot each time there is a call to the %ADD-CLASS-TO-INSTANCE%
Galahad Statement..

Vector Position 18

Label. Part Of

Format. ((Domain (1-card u-card))

(Domain (-card u-card)))

Description. This position contains the domain/cardinality pairs for each
locally defined domain of the Part Of instance aggregation. The
COMPILE-CLASS function of Galahad uses the domains listed in this
position as a kernel for building the All Part Of Inheritance Structure
slot (vector position 19). Also, the cardinality of the domains in this
position is referenced each time the Part Of aggregation becomes
updated. This slot is assigned its value based on the IA/PART-OF
clause passed to CREATE-CLASS. It also can be assigned a value from
direct use of the ADD-PART-OF Galahad statement.

Vector Position 19

Label. All Part Of Inheritance Structure

109

Format.
((Domain. Classname)(Domain. Classname)
(Domain. Classname)(Domain. Classname)

(Domain. Classname)(Domain. Classname))

Description. This position contains the symbol/defining-class pairs for both
locally defined and all inherited domains for the Part Of instance
aggregation. The COMPILE-CLASS function of Galahad both uses and
assigns values to this slot. COMPILE-CLASS first assigns values to this
position based on the class's inheritance hierarchy. It then uses this
position to build the instance environments needed for instance method
evaluation.

Vector Position 20

Label. Parts

Format. ((Domain (1-card u-card))

(Domain (1-card u-card)))

Description. This position contains the domain/cardinality pairs for each
locally defined domain of the Parts instance aggregation. The
COMPILE-CLASS function of Galahad uses the domains listed in this
position as a kernel for building the All Parts Inheritance Structure slot
(vector position 21). Also, the cardinality of the domains in this position
is referenced each time the Parts aggregation becomes updated. This
slot is assigned its value based on the [A/PARTS clause passed to
CREATE-CLASS. It also can be assigned a value from direct use of the
ADD-PARTS Galahad statement.

Vector Position 21

Label. All Parts Inheritance Structure

Format.
((Domain. Classname)(Domain. Classname)
(Domain. Classname)(Domain. Classname)

(Domain. Classname)(Domain. Classname))

Description. This position contains the symbol/defining-class pairs for both
iocally defined and all inherited domains for the Parts instance
aggregation. The COMPILE-CLASS function of Galahad both uses and
assigns values to this slot. COMPILE-CLASS first assigns values to this
position based on the class's inheritance hierarchy. It then uses this

110

position to build the instance environments needed for instance method
evaluation.

Vector Position 22

Label. Element Of

Format. ((Domain (1-card u-card))

(Domain (1-card u-card)))

Description. This position contains the domain/cardinality pairs for each
locally defined domain of the Element Of instance aggregation. The
COMPILE-CLASS function of Galahad uses the domains listed in this
position as a kernel for building the All Element Of Inheritance
Structure slot (vector position 23). Also, the cardinality of the domains
in this position is referenced each time the Element Of aggregation
becomes updated. This slot is assigned its value based on the
IA/ELEMENT-OF clause passed to CREATE-CLASS. It also can be
assigned a value from direct use of the ADD-ELEMENT-OF Galahad
statement.

Vector Position 23

Label. All Element Of Inheritance Structure

Format.
((Domain. Classname)(Domain. Classname)
(Domain. Classnamc)(Domain. Classname)

(Domain. Classname)(Domain. Classname))

Description. This position contains the symbol/defining-class pairs for both
locally defined and all inherited domains for the Element Of instance
aggregation. The COMPILE-CLASS function of Galahad both uses and
assigns values to this slot. COMPILE-CLASS first assigns values to this
position based on the class's inheritance hierarchy. It then uses this
position to build the instance environments needed for instance method
evaluation.

Vector Position 24

Label. Elements

Format. ((Domain (1-card u-card))

(Domain (1-card u-card)))

Description. This position contains the domain/cardinality pairs for each
locally defined domain of the Elements instance aggregation. The
COMPILE-CLASS function of Galahad uses the domains listed in this
position as a kernel for building the All Elements Inheritance Structure
slot (vector position 25). Also, the cardinality of the domains in this
position is referenced each time the Elements aggregation becomes
updated. This slot is assigned its value based on the IA/ELEMENTS
clause passed to CREATE-CLASS. It also can be assigned a value from
direct use of the ADD-ELEMENTS Galahad statement.

Vector Position 25

Label. All Elements Inheritance Structure

Format.
((Domain. Classname)(Domain. Classname)
(Domain. Classname)(Domain. Classname)

(Domain. Classname)(Domain. Classname))

Description. This position contains the symbol/defining-class pairs for both
locally defined and all inherited domains for the Elements instance
aggregation. The COMPILE-CLASS function of Galahad both uses and
assigns values to this slot. COMPILE-CLASS first assigns values to this
position based on the class's inheritance hierarchy. It then uses this
position to build the instance environments needed for instance method
evaluation.

Vector Position 26

Label. Member Of

Format. ((Domain (1-card u-card))

(Domain (1-card u-card)))

Description. Thikz position contains the domain/cardinality pairs for each
locally defined domain of the Member Of instance aggregation. The
COMPILE-CLASS function of Galahad uses the domains listed in this
position as a kernel for building the All Member Of Inheritance
Structure slot (vector position 27). Also, the cardinality of the domains
in this position is referenced each time the Member Of aggregation
becomes updated. This slot is assigned its value based on the

112

IA/MEMBER-OF clause passed to CREATE-CLASS. It also can be
assigned a value from direct use of the ADD-MEMBER-OF Galahad
statement.

Vector Position 27

Label. All Member Of Inheritance Structure

Format.
((Domain. Classname)(Domain. Classname)
(Domain. Classname)(Domain. Classname)

(Domain. Classname)(Domain. Classname))

Description. This position contains the symbol/defining-class pairs for both
locally defined and all inherited domains for the Member Of instance
aggregation. The COMPILE-CLASS function of Galahad both uses and
assigns values to this slot. COMPILE-CLASS first assigns values to this
position based on the class's inheritance hierarchy. It then uses this
position to build the instance environments needed for instance method
evaluation.

Vector Position 28

Label. Members

Format. ((Domain 0-card u-card))

(Domain (1-card u-card)))

Description. This position contains the domain/cardinality pairs for each
locally defined domain of the Members instance aggregation. The
COMPILE-CLASS function of Galahad uses the domains listed in this
position as a kernel for building the All Members Inheritance Structure
slot (vector position 29). Also, the cardinality of the domains in this
position is referenced each time the Members aggregation becomes
updated. This slot is assigned its value based on the IA/MEMBERS
clause passed to CREATE-CLASS. It also can be assigned a value from
direct use of the ADD-MEMBERS Galahad statement.

Vector Position 29

Label. All Members Inheritance Structure

113

Format.
((Domain. Classname)(Domain. Classname)
(Domain. Classname)(Domain. Classname)

(Domain. Classname)(Domain. Classname))

Description. This position contains the symbol/defining-class pairs for both
locally defined and all inherited domains for the Members instance
aggregation. The COMPILE-CLASS function of Galahad both uses and
assigns values to this slot. COMPILE-CLASS first assigns values to this
position based on the class's inheritance hierarchy. It then uses this
position to build the instance environments needed for instance method
evaluation.

Galahad Instance Vector

The 9 slot vector described below is the main data structure we used to

model Galahad instances. As with our description of the class vector, items

appearing entirely in capital letters should be interpreted as literals. Ellipses

indicate that a particular list or atom can be repeated as many times as necessary.

Vector Position 0

Label. Instance Name

Format. Instance-name

Description. The Instance Name position identifies the name of the Galahad
instance represented by this particular vector. The Galahad system uses
this position whenever it needs to retrieve the name of the instance. The
Instance Name slot is assigned its value during the %CREATE-
INSTANCE% process.

Vector Position 1

Label. All Instance Variables

Format.
((Classname (Instvar Value) ... (Instvar Value)
(Classname (Instvar Value) ... (Instvar Value))

(Classname (Instvar Value) ... (Instvar Value)))

114

Description. This slot contains an ASSOC list of symbol/value pairs for all
instance variables represented by the instance object. The CAR of each
ASSOC list component is the name of the class locally defining the
corresponding instance variables. The SEND mechanism in Galahad
uses this slot to build the temporary instance method evaluation
environment. This slot is assigned new class components, complete
with symbol/value pairs for each call to %ADD-CLASS-TO-
INSTANCE%. The value portion of each symbol/value pair is updated
whenever the corresponding instance variable is assigned a new value.

Vector Position 2

Label. All Part Of

Format.
((Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Irstance-Name)

(Domain Instance-Name... Instance-Name))
(Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Instance-Name)

(Domain Instance-Name.. .Instance-Name)))

Description. The All Part Of position contains a nested ASSOC list of
instance names forming the Part Of aggregation for this particular
instance. The CAR of each nested ASSOC list component is the domain
(defining class name) of the corresponding listed instances. The head of
each main component is the name of the class whose Part Of
specification locally defines the nested domains. The SEND mechanism
in Galahad uses this slot to build the temporary instance method
evaluation environment. This slot is assigned new class components for
each call to %ADD-CLASS-TO-INSTANCE%. The Instance-Name...
Instance-Name portion of each component is updated whenever the Part
Of aggregation receives a new value for the instance.

Vector Position 3

Label. All Parts

115

Format.
((Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Instance-Name)

(Domain Instance-Name ... Instance-Name))
(Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Instance-Name)

(Domain Instance-Name.. .Instance-Name)))

Description. This slot contains a nested ASSOC list of instance names
forming the Parts aggregation for this particular instance. The CAR of
each nested ASSOC list component is the domain (defining class name)
of the corresponding listed instances. The head of each main component
is the name of the class whose Parts specification locally defines the
nested domains. The SEND mechanism in Galahad uses this slot to
build the temporary instance method evaluation environment. This slot
is assigned new class components for each call to %ADD-CLASS-TO-
INSTANCE%. The Instance-Name... Instance-Name portion of each
component is updated whenever the Parts aggregation receives a new
value for the instance.

Vector Position 4

Label. All Element Of

Format.
((Classname

(Domain Instance-Name ... Instance-Name)
(Domain Instance-Name ... Instance-Name)

(Domain Instance-Name... Instance-Name))
(Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Instance-Name)

(Domain Instance-Name... Instance-Name)))

Description. The All Element Of position contains a nested ASSOC list of
instance names forming the Element Of aggregation for this particular
instance. The CAR of each nested ASSOC list component is the domain
(defining class name) of the corresponding listed instances. The head of
each main component is the name of the class whose Element Of
specification locally defines the nested domains. The SEND mechanism
in Galahad uses this slot to build the temporary instance method
evaluation environment. This slot is assigned new class components for

116

each call to %ADD-CLASS-TO-INSTANCE%. The Instance-Name...
Instance-Name portion of each component is updated whenever the
Element Of aggregation receives a new value for the instance.

Vector Position 5

Label. All Elements

Format.
((Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Instance-Name)

(Domain Instance-Name ... Instance-Name))
(Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Instance-Name)

(Domain Instance-Name.. .Instance-Name)))

Description. This slot contains a nested ASSOC list of instance names
forming the Elements aggregation for this particular instance. The CAR
of each nested ASSOC list component is the domain (defining class
name) of the corresponding listed instances. The head of each main
component is the name of the class whose Elements specification locally
defines the nested domains. The SEND mechanism in Galahad uses this
slot to build the temporary instance method evaluation environment.
This slot is assigned new class components for each call to %ADD-
CLASS-TO-INSTANCE%. The Instance-Name... Instance-Name
portion of each component is updated whenever the Elements
aggregation receives a new value for the instance.

Vector Position 6

Label. All Member Of

Format.
((Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name ... Instance-Name)

(Domain Instance-Name... Instance-Name))
(Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name ... Instance-Name)

(Domain Instance-Name.. .Instance-Name)))

117

Description. The All Member Of position contains a nested ASSOC list of
instance names forming the Member Of aggregation for this particular
instance. The CAR of each nested ASSOC list component is the domain
(defining class name) of the corresponding listed instances. The head of
each main component is the name of the class whose Member Of
specification locally defines the nested domains. The SEND mechanism
in Galahad uses this slot to build the temporary instance method
evaluation environment. This slot is assigned new class components for
each call to %ADD-CLASS-TO-INSTANCE%. The Instance-Name...
Instance-Name portion of each component is updated whenever the
Member Of aggregation receives a new value for the instance.

Vector Position 7

Label. All Members

Format.
((Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Instance-Name)

(Domain Instance-Name... Instance-Name))
(Classname

(Domain Instance-Name... Instance-Name)
(Domain Instance-Name... Instance-Name)

(Domain Instance-Name.. .Instance-Name)))

Description. This slot contains a nested ASSOC list of instance names
forming the Members aggregation for this particular instance. The CAR
of each nested ASSOC list component is the domain (defining class
name) of the corresponding listed instances. The head of each main
component is the name of the class whose Members specification locally
defines the nested domains. The SEND mechanism in Galahad uses this
slot to build the temporary instance method evaluation environment.
This slot is assigned new class components for each call to %ADD-
CLASS-TO-INSTANCE%. The Instance-Name... Instance-Name
portion of each component is updated whenever the Members
aggregation receives a new value for the instance.

Vector Position 8

Label. Instance Of

Format. (Classname... Classname)

118

Description. The Instance Of position contains the names of the defining
classes for this particular instance. The Galahad system uses this slot to
determine the classes in which to evaluate the object's instance methods.
This slot is updated for each call to %ADD-CLASS-TO-INSTANCE%.

APPENDIX B

GALAHAD USER'S GUIDE

Galahad is an object-oriented conceptual modeling language designed to

run on DOS-based micro computers equipped with a PC Scheme compiler. The

purpose of this appendix is to provide you with an overview of how to use the

Galahad system to build modeling applications. Since our emphasis will be more

procedural than theoretical, we assume you have some degree of familiarity with

object-oriented concepts. Additionally, we presume you have read at least the first

and second chapters of this thesis.

Appendix B is divided into two main sections. The first section,

Galahad Overview, provides a top level description of how to use the system.

Topics include loading and starting Galahad, designing a Galahad application,

entering the design into the system, and controlling Galahad's operation. The

second section, Galahad Statements, describes the form and function of each

Galahad statement.

Galahad Overview

As stated above, the Galahad system is designed to run under PC

Scheme on any DOS or DOS-compatible machine. We recommend, however, that

you use at least a 10 MHz IBM PC/AT with one megabyte of memory. Otherwise,

120

you will not be able to model an application of any appreciable size. Also, the

response time for slower machines is prohibitive.

Other than the syntax of the language, the system is fairly simple to

operate. Because of its simple design, however, it is extremely easy to fall into the

Scheme Inspector. The current version of Galahad has no trapping mechanism for

catching Scheme errors cause by invalid user input. Should you accidently enter

the inspector, exit by pressing <Cntl-Q> and type (start-galahad). This should

return you to the Galahad prompt.

Loading and Starting Galahad

To load Galahad, first place the Galahad system disk in the A: drive. If

you have not already done so, start the PC Scheme compiler. After Scheme is

loaded, type (load "a:galahad.s"). The system will automatically start and display

the Galahad prompt after all system files have been loaded. To assist you in

monitoring the progress of the load, Galahad displays the names of each individual

file as they are being read into the system.

Designing a Galahad Application

While it is not the intent of this paper to double as a tutorial on object-

oriented design, we do include a few general guidelines for you to follow.

First, identify all classes, subclasses, and simple classes to be included in

the system. While Galahad does provide primitives for altering classes and

instances after they have been entered into the system, implementation will

proceed more smoothly if you have thought through the design first.

121

Second, identify all required instances to be modeled. Also include with

these instances the names of their defining class(es). Again, the time spent in a

thorough design will result in a greater time savings during implementation.

Finally, identify all inter-class and inter-instance connections. Be sure

to include all appropriate reverse connections. An example of a forward/reverse

connection is the Member-Of/Members relationship.

Entering a Design into the System

Most Galahad applications are entered into the system via the EDWIN

editor. If so desired, you can also type any Galahad command or message directly

at the Galahad prompt. Regardless of the method you choose, it is important to

realize that portions of most Galahad commands and messages are treated as

evaluated LISP expressions. This provides you with the capability for nesting

Galahad messages or mixing messages with standard LISP commands. For

example, the message (send (send uss-missouri get-captain) get-rank) returns the

rank of the officer in charge of the USS Missouri.

Figure B-1 shows the proper overall format for a Galahad application.

Notice the application is divided into separate sections for Galahad classes and

instances. This is due to the system's assumption that all classes have been

defined before instances can be created. Also, notice the first statement in an

application should always be (delay-compile), and the last statement should always

be (compile).

The DELAY-COMPILE function temporarily suspends domain

constraint enforcement. This temporary suspension allows you to model mutual

interclass dependencies. For example, assume the class CONVOY has a Members

122

(delay-compile)

Classes and
Simple Classes

Instances

(compile)

Figure B- 1. Proper Overall Format for a Galahad Application

123

instance aggregation connection to the class SHIP. Conversely, the class SHIP has

a Member-Of connection to CONVOY. DELAY-COMPILE enables you to enter

both of these classes into the system before Galahad checks for this mutual

interclass dependency. The COMPILE command informs the system that all user-

supplied input is complete and the system should examine the application for

domain constraint violations.

Controlling Galahad's Operation

Thus far, we have already introduced the START-GALAHAD, DELAY-

COMPILE, and COMPILE control functions. Two other functions that are useful

for controlling the system are CHECK-CLASSES-FOR-STRUCTURAL-

INTEGRITY and RESET-GALAHAD.

CHECK-CLASSES-FOR-STRUCTURAL-INTEGRITY allows you to

examine the class structure of your model to ensure all interclass connections

requiring "reverse links" have been completed. For example, this function would

detect whether a Members link between CONVOY and SHIP is lacking the

necessary Member-Of connection between SHIP and CONVOY.

RESET-GALAHAD enables you to remove a Galahad application

without having to completely exit and reload the system. This feature is useful

whenever you want to remove one application and read in another.

Galahad Statements

This section describes all Galahad commands and methods that comprise

the current version of the system. For each item, we provide both the syntax and

124

an explanation for the statement's use. We also include examples to illustrate how

each item can be used in a Galahad application.

In our presentation of a statement's format, we write key words in

capital letters. Optional parameters are surrounded by braces ([]). Quoted items

identify evaluated S-expressions or symbols.

Many of the statements described below have the optional key word

NOCOMPILE. This key word tells Galahad not to compile the class after the

class has been modified. NOCOMPILE is used only if additional modifications

are to be to made to the class, and the user desires to save processing time by

waiting until all changes have been made before allowing the class to be compiled.

ADD-CLASS-VARIABLES

Format:

(SEND 'METACLAS S 'ADD-CLA S S- VARIABLES
'classname
'((classvar domain (value... value) (1-card u-card))
(classvar domain (value ... value) (1-card u-card))

(classvar domain (value .. , value) (1-card u-card)))

['NOCOMPILE])

Description:

ADD-CLASS-VARIABLES is responsible for adding class
variables to a previously created Galahad class.

Each class variable is defined by a list of length four. Classvar is
the name of the variable to be added to the class. Domain identifies the
class of legal values the variable can assume. The (Value... Value)
field corresponds to the variable's default value(s). (i-card u-card)
specifies the variable's cardinality.

Example:

(send 'metaclass 'add-class-variables
'war-ship

'((annual-budget dollars ($5,000,000,000) (1 1)))

125

In this example, we are adding the class variable Annual-Budget to
the class WAR-SHIP. The domain for Annual-Budget is DOLLARS,
and the default value is five billion dollars. This particular class variable
is mandatory due to the cardinality of (1 1).

ADD-CLASS-TO-INSTANCE

Format:

(SEND 'classname '%ADD-CLASS-TO-INSTANCE%
' new-classname
'instance-name

[(PART-OF
(instance-name [instance-class])
(instance-name [instance-class])

(instance-name [instance-class]))]
[(PARTS

(instance-name [instance-class])
(instance-name [instance-class])

(instance-name [instance-class]))]
[(ELEMENT-OF

(instance-name [instance-class])
(instance-name [instance-class])

(instance-name [instance-class]))]
[(ELEMENTS

(instance-name [instance-class])
(instance-name [instance-class])

(instance-name [instance-class]))]
[(MEMBER-OF

(instance-name [instance-class])
(instance-name [instance-class])

(instance-name [instance-class]))]
[(MEMBERS

(instance-name [instance-class])
(instance-name [instance-class])

(instance-name [instance-class]))])]
['((instvar (values))... (instvar (values)))]

126

Description:

ADD-CLASS-TO-INSTANCE is responsible for adding another
defining class to a previously created instance. This method is designed
specifically to support the instance lattice inheritance concept.

Classname is the name of the class responsible for originally
creating the instance. This class is occasionally referred to as the
"owning" class. New-classname identifies the name of the defining
class to be added to instance-name. For each instance aggregation
specification, instance-name is the name of the instance which will
automatically create the reverse connection. Instance-class is the
defining class of instance-name and is used to determine the class of the
reverse instance aggregation connection. Instance-class should be used
only if instance-name belongs to more than one class. Instvar and
values are used to provide initial values to the instance after the class has
been added.

Example:

(send 'student '%add-class-to-instance%
'professer

'dpt
'((member-of (CU-faculty-association)))
'((address ("Room 231 Business Bldg"))

(research-interest ("conceptual-modeling"))))

In this example, we are adding the PROFESSOR class to the
instance DPT. The original class defining DPT is STUDENT. We also
show an initial Member-of instance aggregation and we initialize two
variables: Address and Research-Interest.

ADD-ELEMENT-OF (METACLASS METHOD)

Format:

(SEND 'METACLASS 'ADD-ELEMENT-OF
classname
((domain (1-card u-card))... (domain (1-card u-card)))
['NOCOMPILE])

Description:

The METACLASS method ADD-ELEMENT-OF is responsible for
adding the Element-Of instance aggregation specification to a previously
created Galahad class.

127

Each Element-Of specification is defined by a list of length two.
The name of the class responsible for originating the reverse Elements
specification is identified by Domain. (1-card u-card) specifies the
cardinality of the connection.

Example:

(send 'metaclass 'add-element-of
'officer
'((assignment (0 1))))

(send 'metaclass 'add-elements' assignment

'((officer (1 1))))

In this example, we are building an Element-Of link between
OFFICER and ASSIGNMENT. We also show the reverse Elements
connection from ASSIGNMENT to OFFICER. The cardinality for this
particular example indicates that all ASSIGNMENTs must have
OFFICERs, however, an OFFICER may or may not be an Element-Of
an assignment.

ADD-ELEMENT-OF (instance method)

Format:

(SEND 'instance-name 'ADD-ELEMENT-OF
'element-of-instance-name

'[element-of-instance-name-defining-class])

Description:

The instance method ADD-ELEMENT-OF is responsible for
adding the Element-Of/Elements instance aggregation connection to a
previously created Galahad instance. Unlike ADD-ELEMENT-OF for
METACLASS, this instance method automatically establishes the
reverse link. Consequently, the behavior of this method is identical to
that of the instance method ADD-ELEMENTS.

The name of the instance originating the reverse Elements link is
specified by element-of-instance-name. The optional element-of-
instance-name-defining-class enables the user to specify the defining
class of element-of-instance-name should that instance belong to more
than one class.

Example:

(send ('officer) '%create-instance% 'officer-i)

128

(send ('assignment) '%create-instance% 'assignment-1)

(send 'assignment '%add-class-to-instance% 'any-other-class'assignment- 1)

(send 'officer- I 'add-element-of
'assignment-1 'assignment)

In this example, we build an Element-of/Elements connection
between officer-1 and assignment-1. Since assignment-I is an instance
of both ASSIGNMENT and ANY-OTHER-CLASS, we must specify the
defining class to be used in completing the reverse Elements connection.

ADD-ELEMENTS (METACLASS METHOD)

Format:

(SEND 'METACLASS 'ADD-ELEMENTS
classname
((domain (1-card u-card))... (domain (1-card u-card)))
['NOCOMPILE])

Description:

The METACLASS method ADD-ELEMENTS is responsible for
adding the Elements instance aggregation specification to a previously
created Galahad class.

Each Elements specification is defined by a list of length two. The
name of the class responsible for originating the reverse Element-Of
specification is identified by Domain. (1-card u-card) specifies the
cardinality of the connection.

Example:

(send 'metaclass 'add-elements
'assignment
'((officer (1 1))))

(send 'metaclass 'add-element-of
' officer

'((assignment (0 1))))

In this example, we are building an Elements link between
ASSIGNMENT and OFFICER. We also show the reverse Element-Of
connection from OFFICER to ASSIGNMENT. The cardinality for this
particular example indicates that all ASSIGNMENTs must have

129

OFFICERs, however, an OFFICER may or may not be an Element-Of
an assignment.

ADD-ELEMENTS (instance method)

Format:

(SEND 'instance-name 'ADD-ELEMENTS
'elements-in stance- name
'[elements-instance-name-defining-class])

Description:

The instance method ADD-ELEMENTS is responsible for adding
the Elements/Element-Of instance aggregation connection to a
previously created Galahad instance. Unlike ADD-ELEMENTS for
METACLASS, this instance method automatically establishes the
reverse link. Consequently, the behavior of this method is identical to
that of the instance method ADD-ELEMENT-OF.

The name of the instance originating the reverse Element-Of link is
specified by elements-instance-name. The optional elements-instance-
name-defining-class enables the user to specify the defining class of
elements-instance-name should that instance belong to more than one
class.

Example:

(send ('assignment) '%create-instance% 'assignment-1)

(send ('officer) '%create-instance% 'officer-1)

(send 'officer '%add-class-to-instance% 'any-other-class
'officer-i)

(send 'assignment- I 'add-elements
'officer- 1 'officer)

In this example, we build an Elements/Element-of connection
between assignment-I and officer-1. Since officer-I is an instance of
both ASSIGNMENT and ANY-OTHER-CLASS, we must specify the
defining class to be used in completing the reverse Element-Of
connection.

130

ADD-INSTANCE-VARIABLES

Format:

(SEND 'METACLASS 'ADD-INSTANCE-VARIABLES
'classname
'((instvar domain (value... value) (I-card u-card))

(instvar domain (value... value) (1-card u-card))

(instvar domain (value. .. value) (1-card u-card)))

['NOCOMPILE])

Description:

ADD-INSTANCE-VARIABLES is responsible for adding instance
variables to a previously created Galahad class.

Each instance variable is defined by a list of length four. Instvar is
the name of the variable to be added to the class. Domain identifies the
class of legal values the variable can assume. The (Value... Value)
field corresponds to the variable's default value(s). (1-card u-card)
specifies the variable's cardinality.

Example:

(send 'metaclass 'add-instance-variables'war-ship
'((registry country (USA) (1 1)))

In this example, we are adding instance variable Registry to the
class WAR-SHIP. The domain for Registry is COUNTRY, and the
default value is USA. This particular class variable is mandatory due to
the cardinality of (1 1).

ADD-KIND-OF

Format:

(SEND 'METACLASS 'ADD-KIND-OF
'classname

'((superclass
[(CV classvar classvar ... classvar)]
[(IV instvar instvar... instvar)])

(superclass
[(CV classvar classvar ... classvar)]
[(IV instvar instvar. . . instvar)]))

['NOCOMPILEI)

131

Description:

ADD-KIND-OF is responsible for connecting a previously created
Galahad class to a new super class. The addition of the KIND-OF link
will enable the newly connected class to inherit methods and instances
from the super class.

Classname identifies the name of the class to receive the KIND-OF
property. Superclass identifies the name of class responsible for the
reverse KINDS connection.

Inheritance of variables in a lattice network is resolved by using the
"left up to joins" rule; however, in those situations where there is the
potential for inheritance conflict, the user can select specific instance
variables by using the IV key word and specifying the desired instvars.
Class variables can be selected in the same manner by using the CV key
word and specifying individual classvars.

Example:

(send 'metaclass 'add-kind-of
'submarine
'((nuclear-powered-vehicle)

(water-vehicle (iv size))))

(send 'metaclass 'add-kinds
'nuclear-powered-vehicle
'(submarine))

(send 'metaclass 'add-kinds
'water-vehicle
'(submarine))

In this example, we are specifying that NUCLEAR-POWERED-
VEHICLE and WATER-VEHICLE are to be super classes of
SUBMARINE. Additionally, the instance variable Size has been
specifically selected to be inherited from WATER-VEHICLE.
SUBMARINE inherits all other variables by following the standard "left
up to joins" protocol.

ADD-KINDS

Format:

(SEND 'METACLASS 'ADD-KINDS
'classname

'(subclass subclass ... subclass)
['NOCOMPILE])

132

Description:

ADD-KINDS is responsible for connecting a previously created
Galahad class to a new subclass. The addition of the KINDS link will
enable the newly connected subclass to inherit methods and instances
from classname.

Classname identifies the name of the class to receive the KINDS
property. Subclass identifies the name of class responsible for the
reverse KIND-OF connection.

Example:

(send 'metaclass 'add-kinds
'water-vehicle
'(submarine))

(send 'metaclass 'add-kind-of'submarine

'((water-vehicle (iv size))))

In this example, we are specifying that WATER-VEUCLE is to be
a super class of SUBMARINE.

ADD-MEMBER-OF (METACLASS METHOD)

Format:

(SEND 'METACLASS 'ADD-MEMBER-OF
classname
((domain (1-card u-card))... (domain (1-card u-card)))
['NOCOMPILE])

Description:

The METACLASS method ADD-MEMBER-OF is responsible for
adding the MEMBER-Of instance aggregation specification to a
previously created Galahad class.

Each MEMBER-Of specification is defined by a list of length two.
The name of the class responsible for originating the reverse Members
specification is identified by Domain. (i-card u-card) specifies the
cardinality of the connection.

133

Example:

(send 'metaclass 'add-member-of'war-ship

'((convoy (0 1))))

(send 'metaclass 'add-members)convoy
'((war-ship (2 n))))

In this example, we are building a Member-Of link between WAR-
SHIP and CONVOY. We also show the reverse Members connection
from CONVOY to WAR-SHIP. The cardinality for this particular
example indicates that a WAR-SHIP can belong at most to only one
CONVOY; however, a CONVOY needs at least two WAR-SHIPS.

ADD-MEMBER-OF (instance method)

Format:

(SEND 'instance-name 'ADD-MEMBER-OF
'member-of-instance-name
'[member-of-instance-name-defining-class])

Description:

The instance method ADD-MEMBER-OF is responsible for adding
the Member-Of/Members instance aggregation connection to a
previously created Galahad instance. Unlike ADD-MEMBER-OF for
METACLASS, this instance method automatically establishes the
reverse link. Consequently, the behavior of this method is identical to
that of the instance method ADD-MEMBERS.

The name of the instance originating the reverse Members link is
specified by member-of-instance-name. The optional member-of-
instance-name-defining-class enables the user to specify the defining
class of member-of-instance-name should that instance belong to more
than one class.

Example:

(send ('war-ship) '%create-instance% 'war-ship-1)

(send ('convoy) '%create-instance% 'convoy-i)

(send 'convoy '%add-class-to-instance% 'any-other-class'convoy-i)

134

(send 'officer-i 'add-member-of
'convoy-i 'convoy)

In this example, we build an Member-of/Members connection
between war-ship-I and convoy- 1. Since convoy-I is an instance of
both CONVOY and ANY-OTHER-CLASS, we must specify the
defining class to be used in completing the reverse Members connection.

ADD-MEMBERS (METACLASS METHOD)

Format:

(SEND 'METACLASS 'ADD-MEMBERS
classname
((domain (1-card u-card))... (domain (1-card u-card)))
['NOCOMPILE])

Description:

The METACLASS method ADD-MEMBERS is responsible for
adding the Members instance aggregation specification to a previously
created Galahad class.

Each Members specification is defined by a list of length two. The
name of the class responsible for originating the reverse member-Of
specification is identified by Domain. (1-card u-card) specifies the
cardinality of the connection.

Example:

(send 'metaclass 'add-members
'convoy
'((war-ship (2 n))))

(send 'metaclass 'add-member-of'war-ship
'((convoy (0 1))))

In this example, we are building a Members link between
CONVOY and WAR-SHIP. We also show the reverse Member-of
connection from WAR-SHIP to CONVOY. The cardinality for this
particular example indicates that a WAR-SHIP can belong at most to
only one CONVOY; however, a CONVOY needs at least two WAR-
SHIPS.

135

ADD-MEMBERS (instance method)

Format:

(SEND 'instance-name 'ADD-MEMBERS
'members-instance-name
'[members-instance-name-defining-class])

Description:

The instance method ADD-MEMBERS is responsible for adding
the Members/Member-Of instance aggregation connection to a
previously created Galahad instance. Unlike ADD-MEMBERS for
METACLASS, this instance method automatically establishes the
reverse link. Consequently, the behavior of this method is identical to
that of the instance method ADD-MEMBER-OF.

The name of the instance originating the reverse Members link is
specified by members-instanco-name. The optional members-instance-
name-defining-class enables the user to specify the defining class of
members-instance-name should that instance belong to more than one
class.

Example:

(send ('convoy) '%create-instance% 'convoy-I)

(send ('war-ship) '%create-instance% 'war-ship-1)

(send 'war-ship '%add-class-to-instance% 'any-other-class'war-ship-i)

(send 'convoy-1 'add-members'war-ship-1 'warship)

In this example, we build an Members/Member-Of connection
between convoy-I and war-ship-1. Since war-ship-1 is an instance of
both WAR-SHIP and ANY-OTHER-CLASS, we must specify the
defining class to be used in completing the reverse Member-Of
connection.

136

ADD-PART-OF (METACLASS METHOD)

Format:

(SEND 'METACLASS 'ADD-PART-OF
classname
((domain (1-card u-card)) ... (domain (1-card u-card)))
['NOCOMPILE])

Description:

The METACLASS method ADD-PART-OF is responsible for
adding the Part-Of instance aggregation specification to a previously
created Galahad class.

Each Part-Of specification is defined by a list of length two. The
name of the class responsible for originating the reverse Parts
specification is identified by Domain. (1-card u-card) specifies the
cardinality of the connection.

Example:

(send 'metaclass 'add-part-of
'missile-launcher
'((war-ship (0 1))))

(send 'metaclass 'add-parts'war-ship

'((missile-launcher (0 3))))

In this example, we are building a Part-Of link between MISSILE-
LAUNCHER and WAR-SHIP. We also show the reverse Parts
connection from WAR-SHIP to MISSILE-LAUNCHER. The
cardinality for this particular example indicates that MISSILE-
LAUNCHER belongs at most to one WAR-SHIP. Also a WAR-SHIP
may have between zero to three MISSILE-LAUNCHERs.

ADD-PART-OF (instance method)

Format:

(SEND 'instance-name 'ADD-PART-OF
'part-of-instance-name
'[part-of-instance-name-defining-class])

137

Description:

The instance method ADD-PART-OF is responsible for adding the
Part-Of/Parts instance aggregation connection to a previously created
Galahad instance. Unlike ADD-PART-OF for METACLASS, this
instance method automatically establishes the reverse link.
Consequently, the behavior of this method is identical to that of the
instance method ADD-PARTS.

The name of the instance originating the reverse Parts link is
specified by part-of-instance-name. The optional part-of-instance-
name-defining-class enables the user to specify the defining class of
part-of-instance-name should that instance belong to more than one
class.

Example:

(send ('missile-launcher) '%create-instance%
'missile-launcher- 1)

(send ('war-ship) '%create-instance% 'war-ship- 1)

(send 'war-ship '%add-class-to-instance% 'any-other-class
'war-ship-i)

(send 'missile-launcher- I 'add-part-of
'war-ship-1 'war-ship)

In this example, we build a Part-of/Parts connection between
missile-launcher- I and war-ship- 1. Since war-ship- 1 is an instance of
both WAR-SHIP and ANY-OTHER-CLASS, we must specify the
defining class to be used in completing the reverse Parts connection.

ADD-PARTS (METACLASS METHOD)

Format:

(SEND 'METACLASS 'ADD-PARTS
classname
((domain (1-card u-card)) ... (domain (1-card u-card)))
['NOCOMPILE])

Description:

The METACLASS method ADD-PARTS is responsible for adding
the Parts instance aggregation specification to a previously created
Galahad class.

138

Each Parts specification is defined by a list of length two. The
name of the class responsible for originating the reverse Part-Of
specification is identified by Domain. (i-card u-card) specifies the
cardinality of the connection.

Example:

(send 'metaclass 'add-partsIwar-ship
'((missile-launcher (0 3))))

(send 'metaclass 'add-part-of'missile-launcher
'((war-ship (0 1))))

In this example, we are building a Parts link between WAR-SHIP
and MISSILE-LAUNCHER. We also show the reverse Part-of
connection from MISSILE-LAUNCHER to WAR-SHIP. The
cardinality for this particular example indicates that MISSILE-
LAUNCHER belongs at most to one WAR-SHIP. Also a WAR-SHIP
may have between zero to three MISSILE-LAUNCHERs.

ADD-PARTS (instance method)

Format:

(SEND 'instance-name 'ADD-PARTS
'part-of-instance-name

'[part-of-instance-name-defining-class])

Description:

The instance method ADD-PARTS is responsible for adding the
Parts/Part-Of instance aggregation connection to a previously created
Galahad instance. Unlike ADD-PARTS for METACLASS, this instance
method automatically establishes the reverse link. Consequently, the
behavior of this method is identical to that of the instance method ADD-
PART-OF.

The name of the instance originating the reverse Part-Of link is
specified by parts-instance-name. The optional parts-instance-name-
defining-class enables the user to specify the defining class of parts-
instance-name should that instance belong to more than one class.

Example:

(send ('war-ship) '%create-instance% 'war-ship-1)

139

(send ('missile-launcher) '%create-instance%
'missile-launcher- 1)

(send 'missile-launcher '%add-class-to-instance% 'any-other-class
'missile-launcher- 1)

(send 'war-ship-1 'add-parts
'missile-launcher- I 'missile-launcher)

In this example, we build a Parts/Part-of connection between war-
ship- I and missile-launcher- 1. Since missile-launcher- 1 is an instance
of both MISSILE-LAUNCHER and ANY-OTHER-CLASS, we must
specify the defining class to be used in completing the reverse Part-Of
connection.

CHECK-CLASSES-FOR-STRUCTURAL-INTEGRITY

Format:

(CHECK-CLASSES-FOR-STRUCTURAL-INTEGRITY)

Description:

This Galahad control function examines the current application in
the system and searches for incomplete interclass connections. If any
incomplete connections are found, this function prints a message
informing the user of the problem.

Example:

(send 'mctaclass 'create-class 'submarine
(kind-of ((war-ship))))

(check-classes-for-structural-integrity)

In this example, CHECK-CLASSES-FOR-STRUCTURAL-
INTEGRITY would print an error message indicating a mandatory
KINDS connection was missing between WAR-SHP and
SUBMARINE.

COMPILE

Format:

(COMPILE)

140

Description:

This Galahad control function works in conjunction with the
DELAY-COMPILE command. COMPILE turns off DELAY-
COMPILE mode in the system and starts checking the user model
currently in the system for domain constraint violations. If any
violations occur, they are immediately reported to the user.

Example:

(delay-compile)

(send 'metaclass 'create-class 'submarine
(kind-of ((war-ship)))
(iv (maximum-depth feet (#!unassigned) (1 1))))

(compile)

In this example, assuming no other classes exist in the system,
Galahad would return an error message indicating that FEET is an
unknown class/simple-class. The error would be returned only after the
COMPILE command has been called.

COMPILE-CLASS

Format:

(SEND 'METACLASS 'COMPILE-CLASS
'classname
'compiler-option)

Where compiler-option = { CLASS-VARIABLES
CLASS-METHODS
INSTANCE-VARIABLES
INSTANCE-METHODS
PART-OF
PARTS
ELEMENT-OF
ELEMENTS
MEMBER-OF
MEMBERS
ALL)

Description:

COMPILE-CLASS is responsible for completing the specification
of classname by causing the class to inherit variables and methods from
its superclasses. As a general rule, COMPILE-CLASS should never be

141

called directly from a user's application because Galahad automatically
completes the inheritance structure whenever a class is altered. The only
time the user should call COMPILE-CLASS is if he/she has specified
the NOCOMPILE option on a method altering the structure of a class.

Compiler-option contains a key word passed to COMPILE-CLASS
that specifies which class links should be processed. This is used strictly
for the purpose of system efficiency.

Example:

(send 'metaclass 'compile-class 'submarine
'instance-variables)

(send 'metaclass 'compile-class 'submarine
'all)

In this example, we are forcing the class SUBMARINE to complete
its inheritance structure. In the first example, we are only completing
the inheritance of SUBMARINE's instance variables. In the second
example, all variable, method, and instance aggregation properties are
processed.

142

CREATE-CLASS

Format:

(SEND 'METACLASS 'CREATE-CLASS'classname

['(KIND-OF
(superclass

[(CV classvar classvar ... classvar)]
[(IV instvar instvar... instvar))]

(superclass
[(CV classvar classvar... classvar)]
[(IV instvar instvar... instvar))]

['(KINDS subclass subclass.., subclass)]
['(CV (classvar domain (value... value) (1-card u-card))

(classvar domain (value... value) (1-card u-card))

(classvar domain (value ... value) (1-card u-card))
['(IV (instvar domain (value... value) (1-card u-card))

(instvar domain (value... value) (1-card u-card))

(instvar domain (value... value) (1-card u-card))
['(IA

[(PART-OF
(domain (1-card u-card))... (domain (1-card u-card))]

[(PARTS
(domain (1-card u-card)) ... (domain (1-card u-card))]

[(ELEMENT-OF
(domain (1-card u-card))... (domain (1-card u-card))]

[(ELEMENTS
(domain (1-card u-card)) ... (domain (1-card u-card))]

[(MEMBER-OF
(domain (1-card u-card)) ... (domain (1-card u-card))]

[(MEMBERS
(domain (1-card u-card)) ... (domain (1-card u-card))])]

['(ABSTRACT)])

Description:

CREATE-CLASS is responsible for building Galahad classes and
assigning to these classes variables and instance aggregation
specifications.

Classname identifies the name of the class to be created.

The KIND-OF clause identifies the individual superclasses from
which classname is to inherit all inheritable variables and methods.
Inheritance of variables in a lattice network is resolved by using the "left

143

up to joins" rule; however, in those situations where there is the potential
for inheritance conflict, the user can select specific instance variables by
using the IV key word and specifying the desired instvars. Class
variables can be selected in the same manner by using the CV key word
and specifying individual classvars.

The KINDS clause specifies the individual subclasses which are to
be connected to classname in the inheritance hierarchy.

CV and IV identify the individual class and instance variables to be
associated with classname. Classvar is the name of each class variable.
Instvar is the name of each instance variable. Domain identifies the
class of legal values the variable can assume. The (Value... Value)
field corresponds to the variable's default value(s). (1-card u-card)
specifies the variable's cardinality.

The IA clause specifies the instance aggregation specifications for
classname. The name of the class responsible for originating the reverse
instance aggregation specification is identified by Domain. (1-card u-
card) specifies the cardinality of the connection.

The key word ABSTRACT identifies whether classname is to be

considered an abstract class.

Example:

(send 'metaclass 'create-class 'submarine
'(kind-of water-vehicle)
'(kinds (trident attack-sub)
'(cv (number-in-fleet number (0) (1 1)
'(iv (max-depth number (#!unassigned)(1 1))))
'(ia (member-of (submarine-fleet (1 1)))))

In this example, we are building the class SUBMARINE which is
has WATER-VEHICLE as its only super class. Also, SUBMARINE has
two subclasses, TRIDENT and ATITACK-SUB. There is only one class
variable associated with this class, Number-In-Fleet. It is a mandatory
class variable and has a default value of 0. Also, SUBMARINE has
only one instance varia .e, Max-Depth. Max-Depth is a mandatory
variable; however, there is no default value. Finally, any instance of
SUBMARINE must be a Member-Of a SUBMARINE-FLEET.

144

CREATE-CLASS-METHOD

Format:

(SEND 'METACLASS 'CREATE-CLASS-METHOD
'classname
Imethod-name
'(LAMBDA ((formal [domain])... (formal [domain])

[(OPTIONAL formal [domain] ... [domain])])
method-body)

['NOCOMPILE])

Description:

CREATE-CLASS-METHOD is responsible for adding a new user-
defined class method to a previously created class. This function
enables the user to supply behavior to a class in addition to the default
behavior of the setting and retrieving of instance variables.

The name of the defining class for the new class method is
specified by classname. Method-name identifies the name for the new
class method.

The LAMBDA list associated with the method is conventional
Scheme code except for the formals specification. The formals
specification is Galahad's mechanism of implementing the specialized
method concept. Each (formal domain) pair identifies a parameter to be
passed to the class method. Formal is the name of the parameter passed
to the method. Domain identifies the class of legal values formal can
assume. If domain is omitted, then formal can assume any value.

The OPTIONAL key word enables the user to specialize on
optional parameters. If an optional parameter has been passed to a class
method, then the system specializes on the parameter. Otherwise, no
specialization occurs on optional arguments.

Example:

(send 'metaclass 'create-class-method
'submarine
'test-number-in-fleet
'(lambda ((passed-self *administrator*))

(if (< number-in-fleet 50)
(display "Number of subs is low"))))

In this particular example, we are creating the class method TEST-
NUMBER-IN-FLEET. This method specializes on the identity of the
object sending the message. In this case, we are allowing only the
system administrator to use this method. TEST-NUMBER-IN-FLEET

145

examines the class variable Number-in-Fleet and displays a warning
message if there are fewer than 50 submarines.

CREATE-INSTANCE

Format:

(SEND ('classname ... 'classname) %CREATE-INSTANCE%
'new-instance-name
['(defining-classname

instvar (values)... instvar (values))

'(defining-classname
instvar (values)... instvar (values))]

146

['(PART-OF
(defining-classname

instance-name [or)
[(instance-name instance-class)]

instance-name)
(defining-classname

instance-name (or)
[(instance-name instance-class)]

instance-name))]
['(PARTS

(defining-classname
instance-name [or)
[(instance-name instance-class)]

instance-name)
(defining-classname

instance-name f or)
[(instance-name instance-class)]

instance-name))]
['(ELEMENT-OF

(defining-classname
instance-name for)
[(instance-name instance-class)]

instance-name)
(defining-classname

instance-name (or)
[(instance-name instance-class)]

instance-name))]
['(ELEMENTS

(defining-classname
instance-name for)
(instance-name instance-class)]

instance-name)
(defining-classname

nstancc-name (or
[(instance-name instance-class)]

instance-name))]
['(MEMBER-OF

(defining-classname
instance-name (or)
[(instance-name instance-class)]

147

instance-name)
(defining-classname

instance-name for)
[(instance-name instance-class)]

instance-name))]
['(MEMBERS

(defining-classname
instance-name for)
[(instance-name instance-class)]

instance-name)
(defining-classname

instance-name for)
[(instance-name instance-class)]

instance-name))])

Description:

CREATE-INSTANCE is responsible for building Galahad
instances and assigning to these instances initial values for variables and
instance aggregation connections.

(Classname... classname) specifies the name(s) of the defining
class(es) for new-instance-name. The first class listed is considered to
be the "owning" class of the instance. The others are additional classes
to be added to the instance. Identifying the "owning" class is important
if the user intends to add another class via the ADD-CLASS-TO-
INSTANCE method.

All initialization of variables and instance aggregations are
processed according to their respective defining classnames. If a
defining-classname is specified, it must have a corresponding
classname as described above.

Instvar and values are used to provide initial values to the instance
in the stated defining class.

For the instance aggregation connections, instance-name is the
name of the instance which will automatically create the reverse instance
aggregation connection. Instance-class is the defining class of instance-
name and is used to determine the defining class of the reverse instance
aggregation connection. Instance-class should be used only if instance-
name belongs to more than one class.

148

Example:

(send ('student 'professor) '%create-instance%
'dpt
'(student

address ("123 Elm Street")
major ("information systems"))

'(professor
address ("Room 231 Business Bldg")

research-interest ("conceptual-modeling"))
'(member-of

(student doctoral-student-association)
(professor (CU-faculty-association

organization))))

In this example, we are creating the instance DPT and are assigning
it two classes: STUDENT and PROFESSOR. STUDENT is considered
to be the owning class for DPT.

In the STUDENT defining class, we are initializing the instance
variables Address and Major. We are also specifying that DPT is a
Member-Of the Doctoral-Student-Association.

In the PROFESSOR defining class, we are initializing the instance
variables Address and Research-Interest. We also are specifying that
DPT is a Member-Of the CU-Faculty-Association. Assuming CU-
Faculty-Association is itself an instance of more than one class, we are
specifying the defining class ORGANIZATION for the reverse
Members connection.

CREATE-INSTANCE-METHOD

Format:

(SEND 'METACLASS 'CREATE-INSTANCE-METHOD'classname
'method-name
'(LAMBDA ((formal [domain])... (formal [domain])

[(OPTIONAL formal [domain] ... [domain])])
method-body)

['NOCOMPILE])

Description:

CREATE-INSTANCE-METHOD is responsible for adding a new
user-defined instance method to a previously created class. This
function enables the user to supply behavior to a class in addition to the
default behavior of the setting and retrieving of instance variables.

149

The name of the defining class for the new class method is
specified by classname. Method-name identifies the name for the new
instance method.

The LAMBDA list associated with the method is conventional
Scheme code except for the formals specification. The formals
specification is Galahad's mechanism of implementing the specialized
method concept. Each (formal domain) pair identifies a parameter to be
passed to the instance method. Formal is the name of the parameter
passed to the method. Domain identifies the class of legal valuesformal
can assume. If domain is omitted, then formal can assume any value.

The OPTIONAL key word enables the user to specialize on
optional parameters. If an optional parameter has been passed to an
instance method, then the system specializes on the parameter.
Otherwise, no specialization occurs on optional arguments.

Example:

(send 'metaclass 'create-instance-method
'submarine

'test-current-depth
'(lambda ((passed-self *captain*))

(if (> current-depth maximum-allowable-depth)
(display "exceeding maximum depth"))))

In this particular example, we are creating the class method TEST-
CURRENT-DEPTH. This method specializes on the identity of the
object sending the message. In this case, we are allowing only the
submarine captain to use this method. TEST-CURRENT-DEPTH
compares the instance variables Maximum-Allowable-Depth and
Current-Depth. If Current-Depth is greater than Maximum-Allowable-
Depth, a warning message is displayed.

CREATE-SIMPLE-CLASS

Format:

(SEND 'METACLASS 'CREATE-SIMPLE-CLASS
'simple-class-name

'(LAMBDA (formals)
procedure body))

Description:

CREATE-SIMPLE-CLASS is responsible for creating Galahad
simple classes.

150

Simple-class-name identifies the name to be assigned to the simple
class. Since simple classes are procedural specifications, the system
appends a "T' to simple-class-name before binding the resulting symbol
to the compiled procedure object.

The LAMBDA list can be any user-defined standard Scheme
function; however, the user should write a routine that requires one
parameter and returns a boolean value.

Example:

(send 'metaclass 'create-simple-class
Iname

'(lambda (passed-test-value)
(and (string? passed-test-value)

(< (string-length passed-value)
25))))

In this example, we are creating the simple class NAME. The
symbol bound to the procedure object is NAME?.

The Scheme code shown above performs a test on a passed
parameter to see whether the passed argument is a string of less than 25
characters in length.

DELAY-COMPILE

Format:

(DELAY-COMPILE)

Description:

This Galahad control function works in conjunction with the
COMPILE command. DELAY-COMPILE turns on DELAY-
COMPILE mode, thus temporarily suspending the enforcement of
domain constraint violations. COMPILE re-establishes the checking of
domain constraints.

Example:

(delay-compile)

(send 'metaclass 'create-class 'war-ship
(kinds submarine))

(send 'metaclass 'create-class 'submarine
(kind-of ((war-ship))))

151

(compile)

In this example, Galahad would allow both WAR-SHIP and
SUBMARINE to be created because DELAY-COMPILE mode had
been turned on. Otherwise, with DELAY-COMPILE off, the system
would fail in its attempt to create the first class, WAR-SHIP. This is due
to the system checking for the presence of SUBMARINE, which had not
yet been read into the system.

DELETE-CLASS-METHOD

Format:

(SEND 'METACLASS 'DELETE-CLASS-METHOD'classname
'method-name
['NOCOMPILE])

Description:

DELETE-CLASS-METHOD is responsible for removing a class
method from a class. This function does not distinguish among
specialized methods. Consequently, one call to DELETE-CLASS-
METHOD will remove all specialized methods and the generic dispatch
function.

The defining class name of the method to be deleted is specified by
classname. Method-name identifies the name of the method.

Example:

(send 'metaclass 'delete-class-method'submarine
' test-number-in-fleet)

In this particular example, we are removing from SUBMARINE the
class method TEST-NUMBER-IN-FLEET. The removal includes
TEST-NUMBER-IN-FLEET's generic dispatch function and all
specialized methods.

DELETE-ELEMENT-OF (instance method)

Format:

(SEND 'instance-name 'DELETE-ELEMENT-OF
'element-of-instance-name
'[element-of-instance-name-defining-class])

152

Description:

The instance method DELETE-ELEMENT-OF is responsible for
removing the Element-Of/Elements instance aggregation connection
from a Galahad instance. Since DELETE-ELEMENT-OF removes both
the forward and reverse links, its end result is identical to that achieved
by DELETE-ELEMENTS.

The name of the instance originating the reverse Elements link is
specified by element-of-instance-name. The optional element-of-
instance-name-defining-class enables the user to specify the defining
class of element-of-instance-name should that instance belong to more
than one class.

Example:

(send ('officer) '%create-instance% 'officer-1
'(element-of

(officer assignment- 1)))

(send ('assignment) '%create-instance% 'assignment-i)

(send 'assignment '%add-class-to-instance% 'any-other-class
'assignment-I)

(send 'officer-1 'delete-element-of
'assignment-i 'assignment)

In this example, we remove th,- Element-Of/Elements connection
between officer- I and assignment-1. Since assignment-I is an instance
of both ASSIGNMENT and ANY-OTHER-CLASS, we must specify the
defining class to be used in removing the reverse Elements connection.

DELETE-ELEMENTS (instance method)

Format:

(SEND 'instance-name 'DELETE-ELEMENTS
'elements-instance-name

'[elements-instance-name-defining-class])

Description:

The instance method DELETE-ELEMENTS is responsible for
removing the Elements/Element-Of instance aggregation connection
from a Galahad instance. Since DELETE-ELEMENTS removes both
the forward and reverse links, its end result is identical to that achieved
by DELETE-ELEMENT-OF.

153

The name of the instance originating the reverse Element-Of link is
specified by elements-instance-name. The optional elements-instance-
name-defining-class enables the user to specify the defining class of
elements-instance-name should that instance belong to more than one
class.

Example:

(send ('assignment) '%create-instance% 'assignment-i
'(elements

(officer assignment- 1)))

(send ('officer) '%create-instance% 'officer-i)

(send 'officer '%add-class-to-instance% 'any-other-class'officer-1)

(send 'assignment-i 'delete-elements'officer- 1 'officer)

In this example, we remove the Elements/Element-Of connection
between assignment-1 and officer-1. Since officer-1 is an instance of
both OFFICER and ANY-OTHER-CLASS, we must specify the
defining class to be used in removing the reverse Element-Of
connection.

DELETE-INSTANCE-METHOD

Format:

(SEND 'METACLASS 'DELETE-INSTANCE-METHOD
'classname
'method-name
['NOCOMPILE])

Description:

DELETE-INSTANCE-METHOD is responsible for removing an
instance method from a class. This function does not distinguish among
specialized methods. Consequently, one call to DELETE-INSTANCE-
METHOD will remove all specialized methods and the generic dispatch
function.

The defining class name of the method to be deleted is specified by
classname. Method-name identifies the name of the method.

154

Example:

(send 'metaclass 'delete-instance-method'submarine
'test-current-depth)

In this particular example, we are removing from SUBMARINE the
instance method TEST-CURRENT-DEPTH. The removal includes
TEST-CURRENT-DEPTH's generic dispatch function and all
specialized methods.

DELETE-MEMBER-OF (instance method)

Format:

(SEND 'instance-name 'DELETE-MEMBER-OF
'member-of-instance-name

'[member-of-instance-name-defining-class])

Description:

The instance method DELETE-MEMBER-OF is responsible for
removing the Member-Of/Members instance aggregation connection
from a Galahad instance. Since DELETE-MEMBER-OF removes both
the forward and reverse links, its end result is identical to that achieved
by DELETE-MEMBERS.

The name of the instance originating the reverse Members link is
specified by member-of-instance-name. The optional member-of-
instance-name-defining-class enables the user to specify the defining
class of member-of-instance-name should that instance belong to more
than one class.

Example:

(send ('war-ship) '%create-instance% ',Aar-ship-1
(member-of

(war-ship convoy- 1))))

(send ('convoy) '%create-instance% 'convoy- 1)

(send 'convoy '%add-class-to-instance% 'any-other-class
'convoy-1)

(send 'war-ship-1 'delete-member-of
'convoy-i 'convoy)

155

In this example, we remove the Member-of/Members connection
between war-ship-1 and convoy-1. Since convoy-1 is an instance of
both CONVOY and ANY-OTHER-CLASS, we must specify the
defining class to be used in removing the reverse Memoers connection.

(DELETE-MEMBERS (instance method)

Format:

(SEND 'instance-name 'DELETE-MEMBERS
'members-instance-name
'[members-instance-name-defining-class])

Description:

The instance method DELETE-MEMBERS is responsible for
removing the Members/Member-Of instance aggregation connection
from a Galahad instance. Since DELETE-MEMBERS removes both the
forward and reverse links, its end result is identical to that achieved by
DELETE-MEMBER-OF.

The name of the instance originating the reverse Member-Of link is
specified by members-instance-name. The optional members-instance-
name-defining-class enables the user to specify the defining class of
members-instance-name should that instance belong to more than one
class.

Example:

(send ('convoy) '%create-instance% 'convoy-1
'(members

(convoy war-ship- 1))))

(send ('war-ship) '%create-instance% 'war-ship-1)

(send 'war-ship '%add-class-to-instance% 'any-other-class'war-ship-i)

(send 'convoy-1 'delete-members
'war-ship-i 'warship)

In this example, we remove the Members/Member-Of connection
between convoy-I and war-ship-1. Since war-ship-1 is an instance of
both WAR-SHIP and ANY-OTHER-CLASS, we must specify the
defining class to be used in removing the reverse Member-Of
connection.

156

DELETE-PART-OF (instance method)

Format:

(SEND 'instance-name 'DELETE-PART-OF'part-of-instance-name
'[part-of-instance-name-defining-class])

Description:

The instance method DELETE-PART-OF is responsible for
removing the Part-Of/Parts instance aggregation connection from a
Galahad instance. Since DELETE-PART-OF removes both the forward
and reverse links, its end result is identical to that achieved by DELETE-
PARTS.

The name of the instance originating the reverse Parts link is
specified by part-of-instance-name. The optional part-of-instance-
name-defining-class enables the user to specify the defining class of
part-of-instance-name should that instance belong to more than one
class.

Example:

(send ('missile-launcher) '%create-instance%
'missile-launcher- 1
'(part-of (missile-launcher 'war-ship- 1))))

(send ('war-ship) '%create-instance% 'war-ship- 1)

(send 'war-ship '%add-class-to-instance% 'any-other-class
'war-ship-i)

(send 'missile-launcher-i 'delete-part-of'war-ship-1 'war-ship)

In this example, we remove the Part-of/Parts connection between
missile-launcher-1 and war-ship-1. Since war-ship-1 is an instance of
both WAR-SHIP and ANY-OTHER-CLASS, we must specify the
defining class to be used in removing the reverse Parts connection.

DELETE-PARTS (instance method)

Format:

(SEND 'instance-name 'DELETE-ELEMENTS
'elements-instance-name
'[elements-instance-name-defining-class])

157

Description:

The instance method DELETE-ELEMENTS is responsible for
removing the Elements/Element-Of instance aggregation connection
from a Galahad instance. Since DELETE-ELEMENTS removes both
the forward and reverse links, its end result is identical to that achieved
by DELETE-ELEMENT-OF.

The name of the instance originating the reverse Element-Of link is
specified by elements-instance-name. The optional elements-instance-
name-defining-class enables the user to specify the defining class of
elements-instance-name should that instance belong to more than one
class.

Example:

(send ('war-ship) '%create-instance% 'war-ship-1
'(parts (war-ship missile-launcher-1)))

(send ('missile-launcher) '%create-instance%
'missile-launcher- 1)

(send 'missile-launcher '%add-class-to-instance% 'any-other-class
'missile-launcher- 1)

(send 'war-ship-1 'delete-parts
'missile-launcher- 1 'missile-launcher)

In this example, we remove the Parts/Part-of connection between
war-ship-i and missile-launcher-1. Since missile-launcher-1 is an
instance of both MISSILE-LAUNCHER and ANY-OTHER-CLASS, we
must specify the defining class to be used in removing the reverse Part-
Of connection.

GALAHAD-CLASSES

Format:

%GALAHAD-CLASSES%

Description:

%GALAHAD-CLASSES% is a symbol containing a list of all
Galahad classes currently defined in the system. The user can access
this symbol either directly at the Galahad prompt, or through a user-
defined method.

158

GALAHAD-INSTANCES

Format:

%GALAHAD-INSTANCES%

Description:

%GALAHAD-INSTANCES% is a symbol containing a list of all
Galahad instances currently defined in the system. The user can access
this symbol either directly at the Galahad prompt, or through a user-
defined method.

GALAHAD-SIMPLE-CLASSES

Format:

%GALAHAD-SIMPLE-CLASSES%

Description:

%GALAHAD-SIMPLE-CLASSES% is a symbol containing a list
of all Galahad simple classes currently defined in the system. The user
can access this symbol either directly at the Galahad prompt, or through
a user-defined method.

GET-ALL-CLASS-CONSTRAINTS

Format:

(SEND 'classname '%GET-ALL-CLASS-CONSTRAINTS%)

Description:

GET-ALL-CLASS-CONSTRAINTS returns the contents of
classname's All-Class-Constraints vector position. For details on the
specific contents of this class vector slot, the reader is referred to
Appendix A, A Description of Galahad's Class and Instance Vectors.

GET-ALL-CLASS-METHODS

Format:

(SEND 'classname '%GET-ALL-CLASS-METHODS%)

159

Description:

GET-ALL-CLASS-METHODS returns the contents of classname's
All-Class-Methods vector position. For details on the specific contents
of this class vector slot, the reader is referred to Appendix A, A
Description of Galahad's Class and Instance Vectors.

GET-ALL-CLASS-VARIABLES

Format:

(SEND 'classname '%GET-ALL-CLAS S-VARIABLES%)

Description:

GET-ALL-CLASS-VARIABLES returns the contents of
classname's Al-Class-Variables vector position. For details on the
specific contents of this class vector slot, the reader is referred to
Appendix A, A Description of Galahad's Class and Instance Vectors.

GET-ALL-ELEMENT-OF (class method)

Format:

(SEND 'classname '%GET-ALL-ELEMENT-OF%)

Description:

GET-ALL-ELEMENT-OF returns both locally defined and all
inherited domairdcardinality pairs for the Element-Of instance
aggregation.

GET-ALL-ELEMENT-OF (instance method)

Format:

(SEND 'instance-name 'GET-ALL-ELEMENT-OF)

Description:

GET-ALL-ELEMENT-OF returns the contents of instance-name's
All-Element-Of vector position. For details on the specific contents of
this instance vector slot, the reader is referred to Appendix A, A
Description of Galahad's Clas. and Instance Vectors.

160

GET -ALL-ELEMENT-OF-INHERITANCE-STRUCTURE

Format:

(SEND 'classname '%GET-ALL-ELEMENT-OF-INHERITANCE-
STRUCTURE%)

Description:

GET-ALL-ELEMENT-OF-INHERITANCE-STRUCTURE returns
the contents of classname's All-Element-Of-Inheritance-Structure
vector position. For details on the specific contents of this class vector
slot, the reader is referred to Appendix A, A Description of Galahad's
Class and Instance Vectors.

GET-ALL-ELEMENTS (class method)

Format:

(SEND 'classname '%GET-ALL-ELEMENTS%)

Description:

GET-ALL-ELEMENTS returns both locally defined and all
inherited domain/cardinality pairs for the Elements instance aggregation.

GET-ALL-ELEMENTS (instance method)

Format:

(SEND 'instance-name 'GET-ALL-ELEMENTS)

Description:

GET-ALL-ELEMENTS returns the contents of instance-name's
All-Elements vector position. For details on the specific contents of this
instance vector slot, the reader is referred to Appendix A, A Description
of Galahad's Class and Instance Vectors.

GET-ALL-ELEMENTS-INHERITANCE-STRUCTURE

Format:

(SEND 'classname '%GET-ALL-ELEMENTS-INHERITANCE-
STRUCTURE%)

161

Description:

GET-ALL-ELEMENTS-INHERITANCE-STRUCTURE returns
the contents of classname's All-Elements-Inheritance-Structure vector
position. For details on the specific contents of this class vector slot, the
reader is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-ALL-INSTANCE-CONSTRAINTS

Format:

(SEND 'classname '%GET-ALL-INSTANCE-CONSTRAINTS%)

Description:

GET-ALL-INSTANCE-CONSTRAINTS returns the contents of
classname's All-Instance-Constraints vector position. For details on the
specific contents of this class vector slot, the reader is referred to
Appendix A, A Description of Galahad's Class and Instance Vectors.

GET-ALL-INSTANCE-METHODS

Format:

(SEND 'classname '%GET-ALL-INSTANCE-METHODS%)

Description:

GET-ALL-INSTANCE-METHODS returns the contents of
classname's All-Instance-Methods vector position. For details on the
specific contents of this class vector slot, the reader is referred to
Appendix A, A Description oi Galahad's Class and Instance Vectors.

GET-ALL-INSTANCE-VARIABLES (class method)

Format:

(SEND 'classname '%GET-ALL-INSTANCE-VARIAB LES%)

Description:

GET-ALL-INSTANCE-VARIABLES returns from the class both
locally defined and all inherited instance variable specification
quadruplets. A quadruplet is a list of length four that contains each
instance variable's name, domain, default value(s), and cardinality.

162

GET-ALL-INSTANCE-VARIABLES (instance method)

Format:

(SEND 'instance-name 'GET-ALL-INSTANCE-VARIABLES)

Description:

GET-ALL-INSTANCE-VARIABLES returns the contents of
instance-name's All-Instance-Variables vector position. For details on
the specific contents of this instance vector slot, the reader is referred to
Appendix A, A Description of Galahad's Class and Instance Vectors.

GET-ALL-INSTANCE-VARIABLES-INHERITANCE-STRUCTURE

Format:

(SEND 'classname '%GET-ALL-INSTANCE-VARIABLES-
INHERITANCE-STRUCTURE%)

Description:

GET-ALL-INSTANCE-VARIABLES-INHERITANCE-
STRUCTURE returns the contents of classname's All-Instance-
Variables-Inheritance-Structure vector position. For details on the
specific contents of this class vector slot, the reader is referred to
Appendix A, A Description of Galahad's Class and Instance Vectors.

GET-ALL-MEMBER-OF (class method)

Format:

(SEND 'classname '%GET-ALL-MEMBER-OF%)

Description:

GET-ALL-MEMBER-OF returns both locally defined and all
inherited domain/cardinality pairs for the Member-Of instance
aggregation.

GET-ALL-MEMBER-OF (instance method)

Format:

(SEND 'instance-name 'GET-ALL-MEMBER-OF)

163

Description:

GET-ALL-MEMBER-OF returns the contents of instance-name's
All-Member-Of vector position. For details on the specific contents of
this instance vector slot, the reader is referred to Appendix A, A
Description of Galahad's Class and Instance Vectors.

GET-ALL-MEMBER-OF-INHERITANCE-STRUCTURE

Format:

(SEND 'classname '%GET-ALL-MEMBER-OF-INHERITANCE-
STRUCTURE%)

Description:

GET-ALL-MEMBER-OF-INHERITANCE-STRUCTURE returns
the contents of classname's All-Member-Of-Inheritance-Structure
vector position. For details on the specific contents of this class vector
slot, the reader is referred to Appendix A, A Description of Galahad's
Class and Instance Vectors.

GET-ALL-MEMBERS (class method)

Format:

(SEND 'classname '%GET-ALL-MEMBERS%)

Description:

GET-ALL-MEMBERS returns both locally defined and all
inherited domain/cardinality pairs for the Members instance aggregation.

GET-ALL-MEMBERS (instance method)

Format:

(SEND 'instance-name 'GET-ALL-MEMBERS)

Description:

GET-ALL-MEMBERS returns the contents of instance-name's
All-Members vector position. For details on the specific contents of this
instance vector slot, the reader is referred to Appendix A, A Description
of Galahad's Class and Instance Vectors.

164

GET-ALL-MEMBERS-LNHERITANCE-STRUCTURE

Format:

(SEND 'classname '%GET-ALL-MEMBERS-INHERITANCE-
STRUCTURE%)

Description:

GET-ALL-MEMBERS-INHERITANCE-STRUCTURE returns the
contents of classname's All-Members-Inheritance-Structure vector
position. For details on the specific contents of this class vector slot, the
reader is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-ALL-PART-OF (class method)

Format:

(SEND 'classname '%GET-ALL-PART-OF%)

Description:

GET-ALL-PART-OF returns both locally defined and all inherited
domain/cardinality pairs for the Part-Of instance aggregation.

GET-ALL-PART-OF (instance method)

Format:

(SEND 'instance-name 'GET-ALL-PART-OF)

Description:

GET-ALL-PART-OF returns the contents of instance-name's All-
Part-Of vector position. For details on the specific contents of this
instance vector slot, the reader is referred to Appendix A, A Description
of Galahad's Class and Instance Vectors.

GET-ALL-PART-OF-INHERITANCE-STRUCTURE

Format:

(SEND 'classname '%GET-ALL-PART-OF-INHERITANCE-
STRUCTURE%)

165

Description:

GET-ALL-PART-OF-INHERITANCE-STRUCTURE returns the
contents of classname's All-Part-Of-Inheritance-Structure vector
position. For details on the specific contents of this class vector slot, the
reader is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-ALL-PARTS (class method)

Format:

(SEND 'classname '%GET-ALL-PARTS%)

Description:

GET-ALL-PARTS returns both locally defined and all inherited
domain/cardinality pairs for the Parts instance aggregation.

GET-ALL-PARTS (instance method)

Format:

(SEND 'instance-name 'GET-ALL-PARTS)

Description:

GET-ALL-PARTS returns the contents of instance-name's All-
Parts vector position. For details on the specific contents of this instance
vector slot, the reader is referred to Appendix A, A Description of
Galahad's Class and Instance Vectors.

GET-ALL-PARTS-INHERITANCE-STRUCTURE

Format:

(SEND 'classname '%GET-ALL-PARTS-INHERITANCE-
STRUCTURE%)

Description:

GET-ALL-PARTS-INHERITANCE-STRUCTURE returns the
contents of classname's All-Parts-Inheritance- Structure vector position.
For details on the specific contents of this class vector slot, the reader is
referred to Appendix A, A Description of Galahad's Class and Instance
Vectors.

166

GET-CLASS

Format:

(SEND 'classname '%GET-CLASS%)

Description:

GET-CLASS returns the entire class vector associated with
classname. For details on the specific contents of this vector, the reader
is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-CLASS-CONSTRAINTS

Format:

(SEND 'classnme '%GET-CLASS-CONSTRAINTS%)

Description:

GET-CLASS-CONSTRAINTS returns the contents of classname's
Class-Constraints vector position. For details on the specific contents of
this class vector slot, the reader is referred to Appendix A, A Description
of Galahad's Class and Instance Vectors.

GET-CLASS-METHODS

Format:

(SEND 'classname '%GET-CLASS-METHODS%)

Description:

GET-CLASS-METHODS returns the contents of classname's
Class-Methods vector position. For details on the specific contents of
this class vector slot, the reader is referred to Appendix A, A Description
of Calahad's Class and Instance Vectors.

GET-CLASS-NAME

Format:

(SEND 'classname '%GET-CLASS-NAME%)

167

Description:

GET-CLASS-NAME returns the contents of classname's Class-
Name vector position. For details on the specific contents of this class
vector slot, the reader is referred to Appendix A, A Description of
Galahad's Class and Instance Vectors.

GET-CLASS-NAME-INST

Format:

(SEND 'classname '%GET-CLAS S-NAME-INST%)

Description:

GET-CLASS-NAME-INST returns the contents of classname's
Class-Instance-Methods-Environment-Symbol vector position. For
details on the specific contents of this class vector slot, the reader is
referred to Appendix A, A Description of Galahad's Class and Instance
Vectors.

GET-CLASS-VARIABLES

Format:

(SEND 'classname '%GET-CLAS S-VARIABLES%)

Description:

GET-CLASS-VARIABLES returns the contents of classname's
Class-Variables vector position. For details on the specific contents of
this class vector slot, the reader is referred to Appendix A, A Description
of Galahad's Class and Instance Vectors.

GET-ELEMENT-OF (class method)

Format:

(SEND 'classname '%GET-ELEMENT-OF%)

Description:

GET-ELEMENT-OF returns the contents of classname's Element-
Of vector position. For details on the specific contents of this class
vector slot, the reader is referred to Appendix A, A Description of
Galahad's Clasc and Instance Vectors.

168

GET-ELEMENT-OF (instance method)

Format:

(SEND 'instance-name 'GET-ELEMENT-OF)

Description:

GET-ELEMENT-OF returns the value of the Element-Of instance
aggregation for instance-name.

GET-ELEMENTS (class method)

Format:

(SEND 'classname '%GET-ELEMENTS%)

Description:

GET-ELEMENTS returns the contents of classname's Elements
vector position. For details on the specific contents of this class vector
slot, the reader is referred to Appendix A, A Description of Galahad's
Class and Instance Vectors.

GET-ELEMENTS (instance method)

Format:

(SEND 'instance-name 'GET-ELEMENTS)

Description:

GET-ELEMENTS returns the value of the Elements instance
aggregation for instance-name.

GET-INSTANCE

Format:

(SEND 'instance-name 'GET-INSTANCE)

Description:

GET-INSTANCE returns the entire class vector associated with
instance-name. For details on the specific contents of this vector, the

169

reader is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-INSTANCE-CONSTRAINTS

Format:

(SEND 'classname '%GET-INSTANCE-CONS'IRAINTS%)

Description:

GET-INSTANCE-CONSTRAINTS returns the contents of
classname's Instance-Constraints vector position. For details on the
specific contents of this class vector slot, the reader is referred to
Appendix A, A Description of Galahad's Class and Instance Vectors.

GET-INSTANCE-LIST

Format:

(SEND 'classnarne '%GET-INSTANCE-METHODS%)

Description:

GET-INSTANCE-METHODS returns the contents of classname's
Instance-Methods vector position. For details on the specific contents of
this class vector slot, the reader is referred to Appendix A, A Description
of Galahad's Class and Instance Vectors.

GET-INSTANCE-METHODS

Format:

(SEND 'classname '%GET-INSTANCE-METHODS%)

Description:

GET-INSTANCE-METHODS returns the contents of classname's
Instance-Methods vector position. For details on the specific contents of
this class vector slot, the reader is referred to Appendix A, A Description
of Galahad's Class and Instance Vectors.

170

GET-INSTANCE-NAME

Format:

(SEND 'instance-name 'GET-INSTANCE-NAME)

Description:

GET-INSTANCE-NAME returns the contents of instance-name's
Instance-Name vector position, For details on the specific contents of
this instance vector slot, the reader is referred to Appendix A, A
Description of Galahad's Class and Instance Vectors.

GET-INSTANCE-OF

Format:

(SEND 'instance-name 'GET-INSTANCE-OF)

Description:

GET-INSTANCE-OF returns the contents of instance-name's
Instance-Of vector position. For details on the specific contents of this
instance vector slot, the reader is referred to Appendix A, A Description
of Galahad's Class and Instance Vectors.

GET-INSTANCE-VARIABLES (class method)

Format:

(SEND 'classname '%GET-INSTANCE-VARIABLES%)

Description:

GET-INSTANCE-VARIABLES returns the contents of
classname's Instance-Variables vector position. For details on the
specific contents of this class vector slot, the reader is referred to
Appendix A, A Description of Galahad's Class and Instance Vectors.

GET-INSTANCE-VARIABLES (instance method)

Format:

(SEND 'instance-name 'GET-INSTANCE-VARIABLES)

171

Description:

GET-INSTANCE-VARIABLES returns a list of symbol/value pairs
for all instance variables associated with instance-name.

GET-KIND-OF

Format:

(SEND 'classname '%GET-KiND-OF%)

Description:

GET-KIND-OF returns the contents of classname's Kind-Of vector
position. For details on the specific contents of this class vector slot, the
reader is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-KINDS

Format:

(SEND 'classname '%GET-KINDS%)

Description:

GET-KINDS returns the contents of classname's Kinds vector
position. For details on the specific contents of this class vector slot, the
reader is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-MEMBER-OF (class method)

Format:

(SEND 'classname '%GET-MEMBER-OF%)

Description:

GET-MEMBER-OF returns the contents of classname's Member-
Of vector position. For details on the specific contents of this class
vector slot, the reader is referred to Appendix A, A Description of
Galahad's Class and Instance Vectors.

172

GET-MEMBER-OF (instance method)

Format:

(SEND 'instance-name 'GET-MEMBER-OF)

Description:

GET-MEMBER-OF returns the value of the Member-Of instance
aggregation for instar:ce-name.

GET-MEMBERS (class method)

Format:

(SEND 'classname '%GET-MEMBERS%)

Description:

GET-MEMBERS returns the contents of classname's Members
vector position. For details on the specific contents of this class vector
slot, the reader is referred to Appendix A, A Description of Galahad's
Class and Instance Vectors.

GET-MEMBERS (instance method)

Format:

(SEND 'instance-name 'GET-MEMBERS)

Description:

GET-MEMBERS returns the value of the Members instance
aggregation for instance-name.

GET-PART-OF (class method)

Format:

(SEND 'classname '%GET-PART-OF%)

Description:

GET-PART-OF returns the contents of classname's Part-Of vector
position. For details on the specific contents of this class vector slot, the

173

reader is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-PART-OF (instance method)

Format:

(SEND 'instance-name 'GET-PART-OF)

Description:

GET-PART-OF returns the value of the Part-Of instance
aggregation for instance-name.

GET-PARTS (class method)

Format:

(SEND 'classname '%GET-PARTS%)

Description:

GET-PARTS returns the contents of classname's Parts vector
position. For details on the specific contents of this class vector slot, the
reader is referred to Appendix A, A Description of Galahad's Class and
Instance Vectors.

GET-PARTS (instance method)

Format:

(SEND 'instance-name 'GET-PARTS)

Description:

GET-PARTS returns the value of the Parts instance aggregation for
instance-name.

MAKE-CLASS-ABSTRACT

Format:

(SEND 'METACLASS 'MAKE-CLASS-ABSTRACT
'classname

['NOCOMPILE])

174

Description:

MAKE-CLASS-ABSTRACT is responsible for converting a
previously created CONCRETE class to an ABSTRACT class. The
resulting class can now no longer create instances or be added to an
instance as an additional class. Subclasses of classname, however, are
not affected. CONCRETE subclasses still have the capability to
generate instances.

Example:

(send 'metaclass 'create-class 'war-ship
'(kinds submarine))

(send 'metaclass 'create-class 'submarine
'(kind-of ((war-ship)))
'(iv (maximum-depth feet (#!unassigned) (1 1))))

(send 'metaclass 'make-class-abstract 'war-ship)

In this particular example, we are converting the class WAR-SHIP
from being a CONCRETE class to being an ABSTRACT class. After
the above code is executed, no instances can be created from WAR-
SHIP; however, SUBMARINE can still generate instances.

MAKE-CLASS-CONCRETE

Format:

(SEND 'METACLASS 'MAKE-CLASS-CONCRETE
'classname

['NOCOMPILE])

Description:

MAKE-CLASS-CONCRETE is responsible for converting a
previously created ABSTRACT class to a CONCRETE class. The
resulting class can now have the capability of creating instances or being
added as a new class to an instance. Subclasses of classname are not
affected.

Example:

(send 'metaclass 'creatc-class 'war-ship
'(kinds submarine)
'(ABSTRACT))

175

(send 'metaclass 'create-class 'submarine
'(kind-of ((war-ship)))
'(iv (maximum-depth feet (#!unassigned) (1 1)))
'(ABSTRACT))

(send 'metaclass 'make-class-concrete 'war-ship)

In this particular example, we are converting the ABSTRACT class
WAR-SHIP to a CONCRETE class. After the above code is executed,
WAR-SHIP can now create instances. SUBMARINE remains an
ABSTRACT class.

RESET-GALAHAD

Format:

(RESET-GALAHAD)

Description:

This function returns the Galahad system to its initial starting
configuration. All user-defined classes, simple classes, and instances are
removed from the system.

Example:

(send 'metaclass 'create-class 'submarine
(kind-of ((war-ship)))
(iv (maximum-depth feet (#!unassigned) (1 1))))

(send ('submarine) '%create-instance%
'submarine-i)

(reset-galahad)

In this example, SUBMARINE and SUBMARINE-1 are
completely removed form the system.

SET-CLASS-VARIABLE-DEFAULT

Format:

(SEND 'METACLASS 'SET-CLASS-VARIABLE-DEFAULT
'classname
'classvar
'(value... value)
['NOCOMPILEJ)

176

Description:

SET-CLASS-VARIABLE-DEFAULT is responsible for changing
the default value of a class variable in a previously created Galahad
class. Domain and cardinality constraints are enforced in the setting of
this new default value.

Classname specifies the name of the class containing classvar.

(value... value) is the new default value(s) to be assigned to classvar.

Example:

(send 'metaclass 'create-class 'submarine
'(cv (number-in-fleet number (0) (1 1)
'(iv (max-depth number (#!unassigned)(1 1)))))

(send 'metaclass 'set-cl'. s-variable-default
submarine

'number-in-feet
'(100))

In this example, we are changing the default value of Number-In-
Fleet from 0 to 100. Galahad allows for this change in the default value
because 100 passes the NUMBER domain constraint and the mandatory
cardinality for this class variable.

SET-INSTANCE-VARIABLE-DEFAULT

Format:

(SEND 'METACLASS 'SET-INSTANCE-VARIABLE-DEFAULT
'classname
'instvar
'(value... value)
['NOCOMPILE])

Description:

SET-INSTANCE-VARIABLE-DEFAULT is responsible for
changing the default value of an instance variable in a previously created
Galahad class. Domain and cardinality constraints are enforced in the
setting of this new default value.

Classname specifies the name of the class containing instvar.
(value... value) is the new defauit value(s) to be assigned to instvar.

177

Example:

(send 'metaclass 'create-class 'submarine
'(cv (number-in-fleet number (0) (1 1)
'(iv (max-depth number (#!unassigned)(1 1)))))

(send 'metaclass 'set-instance-variable-default
'submarine
'max-depth
'(1000))

In this example, we are changing the default value of Max-Depth
from #!UNASSIGNED to 1000. Galahad allows for this change in the
default value because 1000 passes the NUMBER domain constraint and
the mandatory cardinality for this instance variable.

START-GALAHAD

Format:

(START-GALAHAD)

Description:

The START-GALAHAD function begins the Galahad system and
enables the user to communicate directly with the Galahad User
Environment. Normally the only time this command is called is when
the user accidentally falls into the Scheme inspector and needs to restart
the system.

APPENDIX C

AN ANALYSIS OF
TEXAS INSTRUMENT'S IMPLEMENTATION OF SCOOPS

IN PC SCHEME

SCOOPS (Scheme Object-Oriented Prcgramming System) is an object-

oriented extension to TI Scheme, a specification developed by Texas Instruments

for the Scheme programming language. One can describe SCOOPS as a language

implemented in Scheme that provides the user with an object-oriented paradigm

capable of modeling dynamic, lattice inheritance. The reader is referred to

Chapter 5 of the TI Scheme Language Reference Manual and Chapter 3 of this

paper for details about the salient characteristics of the SCOOPS language.

The purpose of this appendix is to provide the reader with an analysis of

how SCOOPS was implemented in PC Scheme, a micro computer based

implementation of the TI Scheme language specification. PC Scheme was

developed by Texas Instruments for us- in their Professional, Portable

Professional, and BUSINESS-PRO line of micro computers. Also, the software

engineers at Texas Instruments designed PC Scheme to operate on any 8088-based

IBM or 100 percent compatible micro computer as well.

The information conveyed in this section is drawn from experimentation

with several different SCOOPS applications and rather extensive use of PC

Scheme's interactive debugger. The author also referred to the source code for an

179

experimental, non production, version of the SCOOPS language. (Texas

Instruments, 1986)

The designers of the SCOOPS language chose to implement SCOOPS

classes as Scheme vectors and SCOOPS instances as environments.

Consequently, the analysis presented below will center on these two data

structures. Also, there will be a section at the end which describes each of the

SCOOPS procedures and special forms and how they interact with both class

vectors and instance environments. Unless otherwise noted, all references to a

specific Scheme environment are to the lowest frame of that environment.

SCOOPS Class-Vector Description

SCOOPS represents object classes as Scheme vectors. When a class is

created, SCOOPS builds a 15 slot vector to store all information about the class.

As Figure C-1 illustrates, every class vector can be accessed from either the User

Initial Environment or a SCOOPS class environment. In the User Initial

Environment, the vector is bound to the user-supplied symbol in the DEFINE-

,L'ASS statement. In a SCOOPS class environment, the vector is bound to the

symbol %SC-CLASS. The details about each slot in a typical class vector are

supplied below:

Vector Position 0

Label. Scoops Class Identifier

Format. "I#!CLASSI"

Description. This position is a label indicating the vector represents a
SCOOPS class.

180

Cla-ss Vector Instance Environment

0 1#!CLtASSI

1 Class Name

2 ClasvarsUser Global
2 l Classvars <IUe nta

3 All Classvars ~c~ass Symbol> UerIita

4 All lnstvars

5 ixpLit%SC-CLASS SCOOPS
______________Class

6 Make Inst Proc
%*METODS*% Class/Instance

7 Method Enviro %MEHOS* Methods

8 Classvars EnvironCls

9 All Methods %*CLASSVAS Variables

10 ixdwn ist%SC-INIT-VALSI Instance Vars.
1 Copild Flg TInitial Values

12 Inherited Flag %*NTARS*% Instance
_____________variables

14 lnstvars

Figure C-i. SCOOPS Class Vector and Instance Environment Structure

181

Vector Position 1

Label. Class Name

Format. Classname

Description. The Class Name position identifies the name of the SCOOPS
class represented by this particular vector. SCOOPS uses this position
whenever it needs to retrieve the name of the class. The Class Name slot
is assigned its value during the DEFINE-CLASS process.

Vector Position 2

Label. Class Variables

Format. ((Classvar Value)(Classvar Value)

(Classvar Value))

Description. This slot contains the symbol/value pairs of the locally defined
class variables. SCOOPS uses the values in this position as a basis for
beginning to build the All Class Variables slot (Vector Position 3). This
element of the vector is assigned its value during the DEFINE-CLASS
process.

Vector Position 3

Label. All Class Variables

Format. ((Classvar Value)(Classvar Value)

(Classvar Value))

Description. The All Class Variables slot contains the symbol/value pairs
for both the locally defined and all inherited class variables. The
COMPILE-CLASS function of SCOOPS uses this slot when building a
class variables environment. COMPILE-CLASS assigns values to this
position before it begins to build the class variables environment for the
class.

Vector Position 4

Label. All Instance Variables

182

Format. ((Instvar (INITIALIZATION-PROCEDURE))
(Instvar (INITIALIZATION-PROCEDURE))

(instvar default))

Description. This slot contains the variable name/initialization procedure or
variable name/default value for both the locally defined and all inherited
instance variables. The initialization procedure is stored as source code
and is present only for those variables declared to be INITTABLE. The
procedure is replaced for non-INITTABLE variables with the variable's
default value. A sample initialization procedure is as follows:

(APPLY-IF
(MEMQ Instvar %SC-INIT-VALS)
(LAMBDA (A) (CADR A))
default value)

The initialization code in this slot is used by SCOOPS
whenever there is a call to MAKE-INSTANCE. Initialization of
instance variables takes place by evaluating code similar to that shown
above in each newly created instance environment. The reader is
referred to the next section, SCOOPS Instance Environments, for a
description of SCOOPS instance environments and the role of the
SCOOPS symbol %SC-INIT-VALS.

COMPILE-CLASS assigns the All Instance Variables position
its value before the system determines the inheritance structure for the
class.

Vector Position 5

Label. Mixup List

Format. (Classname ... Classname)

Description. The Mixup List contains the names of the class's immediate
parents in the inheritance hierarchy. SCOOPS reads this slot in left to
right order to determine the class's inheritance structure and resolve
conflicts for class variables, instance variables, and methods. This
position is assigned its value based on the MIXIN clause of the
DEFINE-CLASS statement.

Vector Position 6

Label. Make Instance Procedure

183

Format. Procedure Object

Description. The SCOOPS function MAKE-INSTANCE relies on the
procedure contained in this position to return an instance environment,
complete with instance variables and the variables' initial/default values.
The Make Instance Procedure is also responsible for compiling the class
if the class has not been previously compiled.

This slot is assigned its value during the DEFINE-CLASS
process. It also changes to a different procedure object after the class
has been compiled. The new procedure object no longer tests to see
whether the class has been compiled. Instead, it returns an instance
environment with all instance variables bound to their initial/default
values.

Vector Position 7

Label. Method Environment

Format. An Environment Object

Description. This position points to the class's method environment. The
pointer is used whenever SCOOPS needs to access this environment to
add or delete methods. This slot is assigned its value during the
COMPILE-CLASS process. The next section, SCOOPS Instance
Environments, describes the method environment more fully.

Vector Position 8

Label. Class Variables Environment

Format. An Environment Object

Description. This position points to the class's class variable environment.
The slot is used by SCOOPS to locate the environment whenever it
needs to add, update, or delete class variables. The Class Variables
Environment slot is assigned its value during the COMPILE-CLASS
process. The SCOOPS Instance Environments section, describes the
role of the class variables environment more fully.

Vector Position 9

Label. All Methods

184

Format. (method-name
(defining-class. inherited-class))
(defining-class . inherited-class))

(method-name
(defining-class . inherited-class))

Description. The All Methods position contains the names of both the
locally defined and inherited methods of the class. COMPILE-CLASS
is responsible for assigning this position its value and using this slot for
building the methods environment. Also, DEFINE-METHOD and
DELETE-METHOD update this position to reflect changes in the
inheritance structure of user-defined SCOOPS methods.

The format of the All Methods position reveals how the
v-temn models dynamic lattice inheritance of SCOOPS methud. The

key lies in the defining-class/inherited-class dotted pairs associated with
each method. SCOOPS uses these dotted pairs to locate the actual
procedure objects after inheritance conflicts have been resolved. The
defining-class portion of the dotted pair is the name of the class
containing the actual procedure object. The inherited-class portion tells
SCOOPS from where the method was inherited in the inheritance
network. To best understand the way this mechanism works, consider
the inheritance network presented in figure C-2.

In this example, Class D contains the methods Method-1, and
Method-2. By following SCOOPS' inheritance rules, the class inherits
Method-1 from Class A and Method-2 from Class C. Method-1 is not
inherited from Class B because of the inheritance heuristic of searching
"left" superclasses in a depth-first search manner. The corresponding
All Methods slot for Class D is as follows:

((method- I
(class-a. class-a))
(class-b. class-c))

(method-2
(clas,, ass-c))

Using i- Al Methods slot above and the fact that methods are
inherited first from Class A and then from Class C, SCOOPS can
proceed to build pointers to the method procedure objects. All the
system need do is access the CAR of the defining-class/inherited-class
pair and copy the method pointer as it is stored in the defining-class
vector (Vector position 13).

185

Clas A uass

Method-1 Method-1

IF
Method-2

Figure C-2. SCOOPS and Lattice Inheritance for Methods

186

Notice the All Methods slot maintains information about
methods that are not directly inherited by the class. For the example
above, SCOOPS maintains information about Method-1 being stored
with Class B. This is done because the inheritance of methods within
the SCOOPS language is dynamic. A user could possibly delete
Method-I from Class A. In this case the system must know to retrieve
the other Method-1 from Class B.

Vector Position 10

Label. Mixdown List

Format. (Classname ... Classname)

Description. The Mixdown List contains the names of the class's immediate
children in the inheritance hierarchy. SCOOPS uses this value to
propagate newly created methods to a class's subclasses. This ,iot iz
assigned its value and updated during any COMPILE-CLASS of the
class's immediate children.

Vector Position 11

Label. Compile Flag

Format. Boolean

Description. This is a flag indicating whether or not the class has been
compiled. SCOOPS checks this flag to prevent itself from recompiling a
class needlessly. It also refers to this flag in DEFINE-METHOD and
DELETE-METHOD to determine if the method environment needs to
be updated in addition to the class vector. The boolean value in this slot
becomes TRUE only after the class has been compiled by either a direct
call to the COMPILE-CLASS function or an automatic compile directed
by MAKE-INSTANCE. The reader is referred to the SCOOPS
Primitives section for details on MAKE-INSTANCE's automatic
compilation of classes.

Vector Position 12

Label. Inherited Flag

Format. Boolean

Description. This is a flag indicating whether or not the class has been
inherited by any of its subclasses. SCOOPS uses this flag to prevent
itself from needlessly re-inheriting values from a class's parents. The

187

boolean value in this slot becomes TRUE after either the class or one of
its subclasses has been compiled.

Vector Position 13

Label. Methods

Format. ((method-name. procedure-object)

(method-name . procedure-object))

Description. This position contains only those methods locally defined for
the class. When building a method environment, COMPILE-CLASS
refers to this slot to obtain the actual procedure objects. DEFINE-
CLASS assigns values to this position for class and instance variables
that have been declared to be GETTABLE/SETTABLE. DEFINE-
METHOD and DELETE-METHOD also update this slot to reflect any
changes in the assignment of locally defined methods to the class.

Vector Position 14

Label. Instance Variables

Format. ((Instvar (INITIALIZATION-PROCEDURE))
(Instvar (INITIALIZATION-PROCEDURE))

(instvar default))

Description. This slot contains the variable name/initialization procedure or
variable name/default value for instance variables that are defined
locally within a class. The initialization procedure is stored in source
code format and is present for only those variables declared to be
INITI'ABLE. The procedure is replaced for non-INITrABLE variables
with the variable's default value. A sample initialization procedure can
be found with the description of Vector Position 4, All Instance
Variables.

COMPILE-CLASS uses this slot as a basis for beginning to
build the All Instance Variables position. This position is assigned its
value during the DEFINE-CLASS process.

188

SCOOPS Instance Environment Frames

SCOOPS implements all instances as environments. An instance

environment in SCOOPS consists of seven environment frames (see figure C- 1).

The top two frames, User Global Environment and User Initial Environment are

standard among all PC Scheme applications. The next three frames, Scoops Class

Environment, Methods Environment, and Class Variables Environment, are

created when the instance's defining class is compiled. The bottom two frames,

Scoops Initial Values Environment and the Instance Environment are build upon

the creation of each individual instance. Figure C-3 illustrates the SCOOPS

environment hierarchy when multiple classes with multiple instances are present.

SCOOPS evaluates all GET/SET and user-defined methods in the

instance environment. By its evaluation in an instance environment, each method

can directly access all symbols in the environment frame hierarchy. The

description of a typical instance environment is presented below. We begin with

the top frame, the User Global Environment.

User Global Environment

This environment contains Scheme primitives. Neither SCOOPS

primitives nor SCOOPS application symbols reside in this environment.

User Initial Environment

In addition to all the SCOOPS primitives, this environment contains

symbols bound to user-created classes and instances. The symbols are those

supplied by the user during calls to DEFINE-CLASS and (DEFINE <symbol>

MAKE-INSTANCE ...) statements.

189

User Global

F User Initial

SCOOPS i

Class

Class/Instance Class Class
Methods

.lass
Variables

Lt J V8,,-, Instance Instance Instance

Vea arabi

Instance Instance

Figure C-3. SCOOPS Environment Hierarchy:
Multiple Classes with Multiple Instances

190

Scoops Class Environment

This environment contains only the symbol %SC-CLASS. This symbol

is bound to the vector representing the defining class of the instance. This vector

is the exact same vector as referenced by the class's name in the User Initial

Environment.

SCOOPS uses this environment and the standardized symbol %SC-

CLASS for improving the run-time performance of the language. Any SCOOPS

primitive evaluated in a lower environment can have immediate access to the class

vector by referring to the symbol %SC-CLASS. This standardized form of access

saves SCOOPS from having to reference a specific symbol when the system needs

to refer only to an instance's defining class.

Methods Environment

This environment contains pointers to all locally defined and inherited

methods in the SCOOPS class. Additionally, it contains the symbol

%*METHODS*% which is always bound to the string: "-". The presence of

%*METHODS*% is used as a documendng feature to label the environment as a

SCOOPS methods environment.

The locally defined methods referenced in this environment are the exact

same procedures as those identified in the class vector's 13th position.

Additionally, all inherited methods are the same procedure objects as those

contained in the super classes' 13th vector position as well.

This environment always reflects the current method structure of the

SCOOPS class. The DEFINE-METHOD and DELETE-METHOD special forms

191

:.,date the Methods Environment to reflect any changes in the method inheritance

structure.t

Class Variables Environment

This environment contains the bindings of all locally defined and

inherited class variables of the SCOOPS class. Additionally, it contains the

symbol %*CLASSVARS*% which is always bound to the string: "-". The

presence of %*CLASSVARS*% is used as a documenting feature to label the

environment as a SCOOPS class variables environment.

SCOOPS evaluates the SETCV and GETCV methods in this

environment to access the current values of the class variables. Other methods can

access these variables by their evaluation in the instance environment. The Class

Variables environment always reflects the most current values of the class's class

variables.

SCOOPS Initial Values Environment

This environment is built for each new instance created by the system.

The environment contains only the symbol %SC-INIT-VALS. This symbol is

bound to an ASSOC list containing instance variable/initial-value pairs. SCOOPS

derives this list based on user input passed to the MAKE-INSTANCE special

form. The instance variable initialization procedures, located in the class vector's

fourth position, refer to the ASSOC list bound to %SC-INIT-VALS when

assigning an initial value to an instance variable.

192

Instance Environment

This environment is the bottom level of the instance frame hierarchy. It

contains both locally defined and inherited instance variables. Additionally, it

contains the symbol %*INSTVARS*% which is always bound to the string: --"

The presence of %*INSTVARS*% is used as a documenting feature to label the

environment as a SCOOPS instance environment. All user-defined methods and

instance variable GET/SET methods are evaluated in this environment. By their

evaluation in this environment, the methods can take advantage of Scheme's

automatic traversal of the frame hierarchy to resolve externally referenced

variables.

SCOOPS Primitives

After having examined the class vector and instance environment frame

hierarchy, the reader can now more fully appreciate the internal workings of the

SCOOPS procedures and special forms presented below. Each procedure/special

form is described in terms of how it operates on the class vectors and instance

environments.

ALL-CLASSVARS

This procedure examines the All Class Variables slot of the class vector

(Vector Position 3), and returns the CAR of each variable/value pair.

ALL-INSTVARS

This procedure examines the All Instance Variables slot of the class

vector (Vector Position 4), and returns the CAR of each variable/default-value

pair.

193

ALL-METHODS

This procedure examines the All Methods slot of the class vector

(Vector Position 9), and returns the CAR of each method/defining-class list.

CLASS-COMPILED?

This procedure examines the Compile Flag slot of the class vector

(Vector Position 11) and returns its value.

CLASS-OF-OBJECT

This procedure is evaluated in an instance environment and returns the

Class Name slot (Vector Position 1) of the vector bound to %SC-CLASS.

CLASSVARS

This procedure examines the Class Variables slot of the class vector

(Vector Position 2), and returns the CAR of each variable/value list.

COMPILE-CLASS

This macro is responsible for completing the inheritance structure for

each class and building the SCOOPS class, methods, and class variables

environment frames. The specific tasks COMPILE-CLASS performs are as

follows:

1. It establishes the compiling class's position in the inheritance hierarchy

by adding the compiling class's name to the MIXDOWN slots (Vector

Position 10) of the class's immediate parents. The compiling class's

parents are derived from the class's MIXUP list (Vector Position 5).

194

2. COMPILE-CLASS updates those vector positions that require the

traversal of the inheritance hierarchy for their completion. Specifically,

these slots are: All Class Variables (Vector Position 3), All Instance

Variables (Vector Position 4), and All Methods (Vector Position 9).

In completing these vector positions, COMPILE-CLASS does not

rely on the class's immediate parents having previously been compiled.

In other words as COMPILE-CLASS searches for inheritable variables

and methods, it does not reference the third, fourth, or ninth vector

positions of any class. Instead, it examines only the vector positions of

locally defined attributes. To ensure a complete inheritance structure,

COMPILE-CLASS examines all super classes in the inheritance

network.

3. It builds the necessary environments to complete the Method

Environment slot (Vector Position 7) and the Class Variables

Environment slot (Vector Position 8). To build the Method

Environment, COMPILE-CLASS uses both the All Methods Slot

(Vector Position 9) and the Methods slot (Vector Position 13). As

previously mentioned, the All Methods position contains the method

inheritance structure. The Methods slot contains the actual procedure

objects.

4. COMPILE-CLASS modifies the Make Instance Procedure contained in

Vector Position 6. The newly modified procedure, upon a call from

MAKE-INSTANCE, returns a new instance environment complete with

195

instance variables bound to their initial/default values. The original

procedure was responsible for compiling the class before returning an

instance environment.

5. It sets both the Compile Flag (Vector Position 11) and the Inherited Flag

(Vector Position 12) to TRUE.

Based on the comments above, the reader should note that COMPILE-

CLASS does not automatically compile a class's subclasses. This feature is not

necessary due to the way SCOOPS traverses the inheritance network.

DEFINE-CLASS

This macro is responsible for creating the class vector and assigning

initial values to certain slots of the vector. A brief summary of a typical SCOOPS

vector is presented below. The reader is referred to the SCOOPS Vector

Description section of this appendix for details about each vector position.

Slot 0: I#!CLASSI
Slot 1: Class name
Slot 2: Local Class Variables
Slot 3: Local Class Variables

(no inherited variables)
Slot 4: Local Instance Variables

(no inherited variables)
Slot 5: Mixup List
Slot 6: A "Uncompiled Make Instance"

procedure
Slot 7: Empty
Slot 8: Empty
Slot 9: Local Methods

(no inherited methods)
Slot 10: Empty
Slot 11: Empty
Slot 12: Empty
Slot 13: Local Methods
Slot 14: Local Instance Variables

196

DEFINE-METHOD

This macro is responsible for adding user-defined methods to SCOOPS

classes. DEFINE-METHOD is unique in that it does not rely on a class's

compilation to update the All Methods slot (Vector Position 9) of a class. Instead,

it modifies the slot directly without going through the COMPILE-CLASS process.

The specific functions DEFINE-METHOD performs are as follows:

1. It alters the source code of the method to allow the method to access

externally referenced symbols in the current evaluation environment.

Normally, externally referenced symbols are evaluated in the

incrementally extended environment created when the procedure was

defined (Eisenberg 129, 130). To best understand how the source code

is modified, consider the following SCOOPS method: (Texas

Instruments, 1987b, p. 7-153)

(define-method (employees earnings) 0
(+ salary overtime))

Salary and overtime are the externally referenced symbols in this

method. DEFINE-METHOD takes the formals for this method (in this

case the null list) and the body (+ salary overtime) and builds a

LAMBDA special form. Additionally, to ensure SALARY and

OVERTIME are evaluated in the current global environment, DEFINE-

METHOD replaces references to these symbols with (EVAL <symbol>).

For the method described above, the resulting special form is:

(lambda 0 (+ (eval salary) (eval overtime)))

197

2. DEFINE-METHOD evaluates the above special form and places the

resulting procedure object in the defining class vector's Methods slot

(Vector Position 13).

3. It updates the defining class vector's All Methods slot (Vector Position

9). For this particular class, both the defining class portion and the

inherited class portion of the dotted pair are identical. This is due to the

method being locally defined for the class.

4. DEFINE-METHOD then adds the newly created proceciur,, object to the

environment pointed to by the Method Environment slot (Vector

Position 7) of the vector. The symbol bound to the procedure object is

the name of the method as passed to the DEFINE-METHOD special

form.

5. It repeats steps 3 and 4 for each class listed in the MIXDOWN list

(Vector Position 10). For subclasses, the All Methods slot would reflect

that the method was inherited and not locally defined in the class. Also,

a subclass's Method Environment may not be updated due to

SCOOPS's rules for the resolution of inheritance conflicts.

6. Step 5 is repeated recursively until the MIXDOWN lists of all subclasses

have been exhausted.

DELETE-METHOD

This macro is responsible for removing user-defined methods from

SCOOPS classes. DEFINE-METHOD erases user-defined methods by replacing

198

the method's original procedure object with a SCOOPS primitive that identifies

the method as having been deleted. This way, DELETE-METHOD does not have

to restructure the method inheritance hierarchy. Instead, upon being called by the

user application, the SCOOPS primitive merely reports the method as having been

deleted. DELETE-METHOD modifies the Methods slot (Vector Position 13) of

the method's defining class. The special form also updates the procedure object

pointed to by the method name in the Methods environment.

DESCRIBE

This procedure prints selected information about a SCOOPS class or

instance. This primitive first tests to see whether the object to be described is

either a class (a vector) or an instance (an environment). If the object is a class,

DESCRIBE formats and prints the contents of the following vector slots:

Slot 1: Class Name
Slot 3: All Class Variables
Slot 4: All Instance Variables
Slot 5: Mixup List
Slot 9: All Methods
Slot 11: Compiled Flag
Slot 12: Inherited Flag

If the object is an instance, DESCRIBE then formats and prints the

symbol/value pairs of the class variables in the Class Variables environment and

the Instance environment.

GETCV

This macro retrieves the value of a SCOOPS class variable. GETCV

first checks to see if the class has been compiled. It does this by examining the

Compiled Flag slot of the class vector (Vector Position 11). If the class has

already been compiled, GETCV then evaluates the GET method associated with

199

the class variable. Evaluation occurs in the Class Variables environment. If the

class has not been compiled, GETCV issues an error message to the user.

INSTVARS

This procedure examines the Instance Variables slot of the class vector

(Vector Position 14), and returns the CAR of each symbol/value pair.

MAKE-INSTANCE

This macro is responsible for building both the SCOOPS Initial Values

and Instance environments. Within the Initial Values environment, MAKE-

INSTANCE binds %SC-INIT-VALS to the ASSOC list containing the initial

values of the instance variables. After binding %SC-INIT-VALS, MAKE-

INSTANCE then evaluates the procedure located in the Make Instance slot

(Vector Position 6). This procedure is responsible for returning a new instance

environment with the instance variables bound to their appropriate values.

METHODS

This procedure examines the Methods slot of the class vector (Vector

Position 13), and returns the CAR of each symbol/procedure-object pair.

MIXINS

This procedure examines the MIXUP List slot of the class vector

(Vector Position 5), and returns the symbols found in the slot.

NAME->CLASS

This macro searches for a match between the symbol passed to NAME-

>CLASS and the Class Name slot (Vector Position 1) of all SCOOPS classes

200

defined in the system. If a match occurs, this special form returns the class vector

of the corresponding class.

RENAME-CLASS

This macro modifies the Class Name slot (Vector Position 1) of the class

vector. It also adds the class's new name as another symbol in the User Initial

Environment. The symbol corresponding to the old name of the class remains and

continues to point to the newly updated vector.

SEND

This macro builds a procedure call with the selector name and

parameters passed in the SEND statement. It then evaluates the resulting

procedure call in the Instance Environment corresponding to the SEND's

destination. The result of the function call is returned to the user.

SEND-IF-HANDLES

This macro first examines the Methods environment of the destination

instance's defining class. If the selector passed to the SEND exists as a method in

the Methods environment, SEND-IF-HANDLES builds the function call list and

evaluates the method. Otherwise, the macro returns nil.

SETCV

This macro assigns a value to a SCOOPS class variable. SETCV first

checks to see if the class has been compiled. It does this by examining the

Compiled Flag slot of the class vector (Vector Position 11). If the class has

already been compiled, SETCV then evaluates the SET method associated with

the class variable. Evaluation occurs in the Class Variables environment. If the

201

class has not been compiled, SETCV issues an error message to the user.

